Skip to content
2000
image of Recent Advancement in Applications of Hybrid Superconductor and Semiconductor Nanomaterials

Abstract

The study of the characteristics of materials with a size range of 1–100 nm is referred to as nanoscience. Nanotechnology deals with manipulating the molecular structure of materials to modify their inherent properties and acquire new properties with novel use. The principles of nanotechnology can be incorporated with superconductivity as well as in semiconductors. Superconductivity is a promising physical property of materials, and it has been an intriguing and stimulating subject of research due to its practical application in several fields. The development of new technologies depends on novel materials. One such material is hybrid superconductor/semiconductor nanomaterial, which has now been recognized as an exciting material for different applications due to its exceptional physical and chemical properties. There is a report on implementing capable superconductors in induced proximity of a substantial energy difference in semiconductors when strong magnetic fields are present. It is among one of the objectives for applications of superconductor/ semiconductor hybrid nanomaterials in quantum information technologies in the future. These materials have numerous applications in different fields such as photoinduced superconductors, amplifiers, electric grids, SQUID, quantum computing devices, magnetometers, and various smart technologies including electronics, and the energy sector. These superconductor/semiconductor hybrid nanomaterials could be considered as the foundation of next-generation technology. This mini review aims to compile the fabrication techniques and properties of these hybrid nanomaterials and their potential applications as well as promising avenues of future aspects.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454338136241007034237
2024-10-14
2024-11-22
Loading full text...

Full text loading...

References

  1. Nasrollahzadeh M. Sajadi S.M. Sajjadi M. Issaabadi Z. An Introduction to Nanotechnology. Interface Science and Technology. Chapter 1 Nasrollahzadeh M. Sajadi S.M. Sajjadi M. Issaabadi Z. Atarod M. Elsevier 2019 Vol. 28 1 27
    [Google Scholar]
  2. Asha A.B. Narain R. Nanomaterials properties. Polymer Science and Nanotechnology. Chapter 15 Narain R. Elsevier 2020 343 359 10.1016/B978‑0‑12‑816806‑6.00015‑7
    [Google Scholar]
  3. Gilioli E. Delmonte D. Synthesis and characterization of new superconductors materials. Crystals 2020 10 8 649 10.3390/cryst10080649
    [Google Scholar]
  4. Van de Voorde M. Tulinski M. Jurczyk M. Engineered Nanomaterials: A Discussion of the Major Categories of Nanomaterials. Metrology and Standardization of Nanotechnology Wiley 2017 49 74 10.1002/9783527800308.ch3
    [Google Scholar]
  5. Terna A.D. Elemike E.E. Mbonu J.I. Osafile O.E. Ezeani R.O. The future of semiconductors nanoparticles: Synthesis, properties and applications. Mater. Sci. Eng. B 2021 272 115363 10.1016/j.mseb.2021.115363
    [Google Scholar]
  6. Lee E.J.H. Jiang X. Houzet M. Aguado R. Lieber C.M. De Franceschi S. Spin-resolved Andreev levels and parity crossings in hybrid superconductor–semiconductor nanostructures. Nat. Nanotechnol. 2014 9 1 79 84 10.1038/nnano.2013.267 24336403
    [Google Scholar]
  7. De Franceschi S. Kouwenhoven L. Schönenberger C. Wernsdorfer W. Hybrid superconductor–quantum dot devices. Nat. Nanotechnol. 2010 5 10 703 711 10.1038/nnano.2010.173 20852639
    [Google Scholar]
  8. Ibabe A. Gómez M. Steffensen G.O. Kanne T. Nygård J. Yeyati A.L. Lee E.J.H. Joule spectroscopy of hybrid superconductor–semiconductor nanodevices. Nat. Commun. 2023 14 1 2873 10.1038/s41467‑023‑38533‑2 37208316
    [Google Scholar]
  9. Elalaily T. Berke M. Kedves M. Fülöp G. Scherübl Z. Kanne T. Nygård J. Makk P. Csonka S. Signatures of gate-driven out-of-equilibrium superconductivity in Ta/InAs nanowires. ACS Nano 2023 17 6 5528 5535 10.1021/acsnano.2c10877 36912466
    [Google Scholar]
  10. Das P. Ganguly S. Margel S. Gedanken A. Tailor made magnetic nanolights: Fabrication to cancer theranostics applications. Nanoscale Adv. 2021 3 24 6762 6796 10.1039/D1NA00447F 36132370
    [Google Scholar]
  11. Das P. Ganguly S. Rosenkranz A. Wang B. Yu J. Srinivasan S. Rajabzadeh A.R. MXene/0D nanocomposite architectures: Design, properties and emerging applications. Materials Today Nano 2023 24 100428 10.1016/j.mtnano.2023.100428
    [Google Scholar]
  12. Sudha P.N. Sangeetha K. Vijayalakshmi K. Barhoum A. Nanomaterials history, classification, unique properties, production and market. Emerging Applications of Nanoparticles and Architecture Nanostructures. Chapter 12 Barhoum A. Makhlouf A.S.H. Elsevier 2018 341 384 10.1016/B978‑0‑323‑51254‑1.00012‑9
    [Google Scholar]
  13. Saleh T.A. Nanomaterials: Classification, properties, and environmental toxicities. Environ. Technol. Innov. 2020 20 101067 10.1016/j.eti.2020.101067
    [Google Scholar]
  14. Alkaç İ.M. Çerçi B. Timuralp C. Şen F. 2 - Nanomaterials and their classification. Nanomaterials for Direct Alcohol Fuel Cells. Şen F. Elsevier 2021 17 33 10.1016/B978‑0‑12‑821713‑9.00011‑1
    [Google Scholar]
  15. Baig N. Two-dimensional nanomaterials: A critical review of recent progress, properties, applications, and future directions. Compos., Part A Appl. Sci. Manuf. 2023 165 107362 10.1016/j.compositesa.2022.107362
    [Google Scholar]
  16. Zhang Y. Review of physical properties and preparation of nano-superconducting materials. Adv. Mat. Res. 2013 816-817 65 69 10.4028/www.scientific.net/AMR.816‑817.65
    [Google Scholar]
  17. Salem S.S. Hammad E.N. Mohamed A.A. El-Dougdoug W. A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications. Biointerface Res. Appl. Chem. 2022 13 1 41 10.33263/BRIAC131.041
    [Google Scholar]
  18. Güniat L. Caroff P. Fontcuberta i Morral A. Vapor phase growth of semiconductor nanowires: Key developments and open questions. Chem. Rev. 2019 119 15 8958 8971 10.1021/acs.chemrev.8b00649 30998006
    [Google Scholar]
  19. Jia G. Pang Y. Ning J. Banin U. Ji B. Heavy‐metal‐free colloidal semiconductor nanorods: Recent advances and future perspectives. Adv. Mater. 2019 31 25 1900781 10.1002/adma.201900781 31063615
    [Google Scholar]
  20. Baig N. Kammakakam I. Falath W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021 2 6 1821 1871 10.1039/D0MA00807A
    [Google Scholar]
  21. Shengli C. Ziyu X. Gang X. Xinyue S. He D. Xin Z. Zhao Y. Photoelectrochemical sensors based on heterogeneous nanostructures for in vitro diagnostics. Biosens. Bioelectron. X 2022 11 100200
    [Google Scholar]
  22. Takano Y. Focus on superconductivity in semiconductors. Sci. Technol. Adv. Mater. 2008 9 4 040301 10.1088/1468‑6996/9/4/040301 27878012
    [Google Scholar]
  23. Suhail A. Saini A. Beniwal S. Bag M. Tunable optoelectronic properties of CsPbBr3 Perovskite nanocrystals for photodetectors applications. J. Phys. Chem. C 2023 127 34 17298 17306 10.1021/acs.jpcc.3c04856
    [Google Scholar]
  24. Deka M.J. Dutta P. Sarma S. Medhi O.K. Talukdar N.C. Chowdhury D. Carbon dots derived from water hyacinth and their application as a sensor for pretilachlor. Heliyon 2019 5 6 985 10.1016/j.heliyon.2019.e01985 31338457
    [Google Scholar]
  25. Frenkel N. Scharf E. Lubin G. Levi A. Panfil Y.E. Ossia Y. Planelles J. Climente J.I. Banin U. Oron D. Two biexciton types coexisting in coupled quantum dot molecules. ACS Nano 2023 17 15 14990 15000 10.1021/acsnano.3c03921 37459645
    [Google Scholar]
  26. Dones Lassalle C.Y. Kelm J.E. Dempsey J.L. Characterizing the semiconductor nanocrystal surface through chemical Reactivity. Acc. Chem. Res. 2023 56 13 1744 1755 10.1021/acs.accounts.3c00125 37307510
    [Google Scholar]
  27. Deka M.J. Recent advances in fluorescent 0D carbon nanomaterials as artificial nanoenzymes for optical sensing applications. Int. Nano Lett. 2023 13 1 1 14 10.1007/s40089‑022‑00381‑1
    [Google Scholar]
  28. Devi M. Das P. Boruah P.K. Deka M.J. Duarah R. Gogoi A. Neog D. Dutta H.S. Das M.R. Fluorescent graphitic carbon nitride and graphene oxide quantum dots as efficient nanozymes: Colorimetric detection of fluoride ion in water by graphitic carbon nitride quantum dots. J. Environ. Chem. Eng. 2021 9 1 3 10.1016/j.jece.2020.104803
    [Google Scholar]
  29. Lee K. Deng G. Bootharaju M.S. Hyeon T. Synthesis, assembly, and applications of magic-sized semiconductor (CdSe) 13 cluster Acc. Chem. Res. 2023 56 9 1118 1127 10.1021/acs.accounts.3c00061 37079799
    [Google Scholar]
  30. Mimona M.A. Mobarak M.H. Ahmed E. Kamal F. Hasan M. Nanowires: Exponential speedup in quantum computing. Heliyon 2024 10 11 e31940 10.1016/j.heliyon.2024.e31940 38845958
    [Google Scholar]
  31. Paredes P. Rauwel E. Wragg D.S. Rapenne L. Estephan E. Volobujeva O. Rauwel P. Sunlight-Driven photocatalytic degradation of methylene blue with facile one-step synthesized Cu-Cu2O-Cu3N nanoparticle mixtures. Nanomaterials 2023 13 8 1311 10.3390/nano13081311 37110901
    [Google Scholar]
  32. Li Z. Li W. Shao H. Dou M. Cheng Y. Wan X. Jiang X. Zhang Z. Chen Y. Li S. Water-Soluble Ag–Sn–S nanocrystals partially coated with ZnS shells for photocatalytic degradation of organic dyes. ACS Appl. Nano Mater. 2023 6 6 4417 4427 10.1021/acsanm.2c05500
    [Google Scholar]
  33. Nazim M. Khan A.A.P. Asiri A.M. Kim J.H. Exploring rapid photocatalytic degradation of organic pollutants with porous cuo nanosheets: Synthesis, dye removal, and kinetic studies at room temperature. ACS Omega 2021 6 4 2601 2612 10.1021/acsomega.0c04747 33553878
    [Google Scholar]
  34. Xu H. Hao Z. Feng W. Wang T. Li Y. Mechanism of photodegradation of organic pollutants in seawater by TiO 2 -Based photocatalysts and improvement in their performance. ACS Omega 2021 6 45 30698 30707 10.1021/acsomega.1c04604 34805697
    [Google Scholar]
  35. Gogotsi Y. What nano can do for energy storage. ACS Nano 2014 8 6 5369 5371 10.1021/nn503164x 24957279
    [Google Scholar]
  36. Zheng Y. Zou Y. Jiang J. Synthesis of Gd-doped CuInS2 quantum dots exhibiting photoluminescence and high longitudinal relaxivity. Mater. Lett. 2016 168 86 89 10.1016/j.matlet.2016.01.032
    [Google Scholar]
  37. Shi Y. Pramanik A. Tchounwou C. Pedraza F. Crouch R.A. Chavva S.R. Vangara A. Sinha S.S. Jones S. Sardar D. Hawker C. Ray P.C. Multifunctional biocompatible graphene oxide quantum dots decorated magnetic nanoplatform for efficient capture and two-photon imaging of rare tumor cells. ACS Appl. Mater. Interfaces 2015 7 20 10935 10943 10.1021/acsami.5b02199 25939643
    [Google Scholar]
  38. Shi Y. Pan Y. Zhong J. Yang J. Zheng J. Cheng J. Song R. Yi C. Facile synthesis of gadolinium (III) chelates functionalized carbon quantum dots for fluorescence and magnetic resonance dual-modal bioimaging. Carbon 2015 93 742 750 10.1016/j.carbon.2015.05.100
    [Google Scholar]
  39. Mahmood A. Park J.W. TiO2/CdS nanocomposite stabilized on a magnetic-cored dendrimer for enhanced photocatalytic activity and reusability. J. Colloid Interface Sci. 2019 555 801 809 10.1016/j.jcis.2019.08.036 31421560
    [Google Scholar]
  40. Wang J. Yu B. Wang W. Cai X. Facile synthesis of carbon dots-coated CuFe2O4 nanocomposites as a reusable catalyst for highly efficient reduction of organic pollutants. Catal. Commun. 2019 126 35 39 10.1016/j.catcom.2019.04.012
    [Google Scholar]
  41. Ahmadian-Fard-Fini S. Ghanbari D. Salavati-Niasari M. Photoluminescence carbon dot as a sensor for detecting of Pseudomonas aeruginosa bacteria: Hydrothermal synthesis of magnetic hollow NiFe2O4-carbon dots nanocomposite material. Compos., Part B Eng. 2019 161 564 577 10.1016/j.compositesb.2018.12.131
    [Google Scholar]
  42. Zhang M. Wang W. Zhou N. Yuan P. Su Y. Shao M. Chi C. Pan F. Near-infrared light triggered photo-therapy, in combination with chemotherapy using magnetofluorescent carbon quantum dots for effective cancer treating. Carbon 2017 118 752 764 10.1016/j.carbon.2017.03.085
    [Google Scholar]
  43. Kumar V.B. Marcus M. Porat Z. Shani L. Yeshurun Y. Felner I. Shefi O. Gedanken A. Ultrafine highly magnetic fluorescent γ-Fe 2 O 3 /NCD nanocomposites for neuronal manipulations. ACS Omega 2018 3 2 1897 1903 10.1021/acsomega.7b01666 30023817
    [Google Scholar]
  44. Ye W. Feng Z. Xiong D. He M. Ni-Doped SnO 2 Nanoparticles anchored on carbon nanotubes as anode materials for Lithium-Ion Batteries. ACS Appl. Nano Mater. 2023 6 18 16524 16535 10.1021/acsanm.3c02710
    [Google Scholar]
  45. Wernsdorfer W. From micro- to nano-SQUIDs: Applications to nanomagnetism. Supercond. Sci. Technol. 2009 22 6 064013 10.1088/0953‑2048/22/6/064013
    [Google Scholar]
  46. José Martínez-Pérez M. Koelle D. Erratum to: NanoSQUIDs: Basics & recent advances. Phys. Sci. Rev. 2018 3 2 20179001 10.1515/psr‑2017‑9001
    [Google Scholar]
  47. Liu C. Zhang Y. Mück M. Krause H.J. Braginski A.I. Xie X. Offenhäusser A. Jiang M. An insight into voltage-biased superconducting quantum interference devices. Appl. Phys. Lett. 2012 101 22 222602 10.1063/1.4768698
    [Google Scholar]
  48. Russo R. Granata C. Walke P. Vettoliere A. Esposito E. Russo M. NanoSQUID as magnetic sensor for magnetic nanoparticles characterization. J. Nanopart. Res. 2011 13 11 5661 5668 10.1007/s11051‑011‑0330‑2
    [Google Scholar]
  49. Oppenlaender J. Haeussler C. Friesch A. Tomes J. Caputo P. Traeuble T. Schopohl N. Superconducting quantum interference filters operated in commercial miniature cryocoolers. IEEE Trans. Appl. Supercond. 2005 15 2 936 939 10.1109/TASC.2005.850128
    [Google Scholar]
  50. Yao C. Ma Y. Superconducting materials: Challenges and opportunities for large-scale applications. iScience 2021 24 6 102541 10.1016/j.isci.2021.102541 34136765
    [Google Scholar]
  51. Hirsch J.E. Marsiglio F. Nonstandard superconductivity or no superconductivity in hydrides under high pressure. Phys. Rev. B 2021 103 13 134505 10.1103/PhysRevB.103.134505
    [Google Scholar]
  52. Bose S. A review of superconductivity in nanostructures—from nanogranular films to anti-dot arrays. Supercond. Sci. Technol. 2023 36 6 063003 10.1088/1361‑6668/acc980
    [Google Scholar]
  53. Brun C. Cren T. Roditchev D. Review of 2D superconductivity: The ultimate case of epitaxial monolayers. Supercond. Sci. Technol. 2017 30 1 013003 10.1088/0953‑2048/30/1/013003
    [Google Scholar]
/content/journals/cms/10.2174/0126661454338136241007034237
Loading
/content/journals/cms/10.2174/0126661454338136241007034237
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test