Skip to content
2000
image of Influence of Rubber Distribution and Shape on Properties of Thermoplastic Vulcanizate: Finite Element Modeling

Abstract

Introduction

Thermoplastic vulcanizate (TPV), as a rapidly developing green engineering material, its microstructure determines its comprehensive mechanical properties. However, there are few reports on the influence of the distribution and shape of rubber particles on the overall properties of TPV.

Method

In order to overcome the shortcoming that traditional experimental methods cannot obtain the internal stress change process of materials, we have established a series of representative volume element (RVE) models with different particle distributions and shapes through the micromechanical finite element method.

Results

The uniaxial tension and tension recovery of the models have been simulated. The results show that with the change of particle distribution and shape, the minimum elastic modulus of TPV based on ethylene propylene diene monomer (EPDM) / polypropylene (PP) could reach 31.4 MPa and the highest resilience could reach 87.4%.

Conclusion

In addition, it can be seen from the stress distribution nephogram that the change in particle distribution and shape would obviously change the position of the stress concentration area in TPV.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454335122240921021158
2024-10-02
2025-01-19
Loading full text...

Full text loading...

References

  1. Wu Q. Li W. Liu C. Xu Y. Li G. Zhang H. Huang J. Miao J. Carbon fiber reinforced elastomeric thermal interface materials for spacecraft. Carbon 2022 187 432 438 10.1016/j.carbon.2021.11.039
    [Google Scholar]
  2. Guerra N.B. Sant’Ana Pegorin G. Boratto M.H. de Barros N.R. de Oliveira Graeff C.F. Herculano R.D. Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis . Mater. Sci. Eng. C 2021 126 112126 10.1016/j.msec.2021.112126 34082943
    [Google Scholar]
  3. Sirisinha C. Sae-oui P. Suchiva K. Thaptong P. Properties of tire tread compounds based on functionalized styrene butadiene rubber and functionalized natural rubber. J. Appl. Polym. Sci. 2020 137 20 48696 10.1002/app.48696
    [Google Scholar]
  4. Ma L. Yang W. Wang Y. Chen H. Xing Y. Wang J. Multi-dimensional strain sensor based on carbon nanotube film with aligned conductive networks. Compos. Sci. Technol. 2018 165 190 197 10.1016/j.compscitech.2018.06.030
    [Google Scholar]
  5. Ma L. Lu W. Carbon nanotube film based flexible bi-directional strain sensor for large deformation. Mater. Lett. 2020 260 126959 10.1016/j.matlet.2019.126959
    [Google Scholar]
  6. Adhikari B. Reclamation and recycling of waste rubber. Prog. Polym. Sci. 2000 25 7 909 948 10.1016/S0079‑6700(00)00020‑4
    [Google Scholar]
  7. Hayeemasae N. Salleh S.Z. Ismail H. Using chloroprene rubber waste in rubber blends: optimizing performance by adding fillers. Green Mater. 2019 7 4 156 167 10.1680/jgrma.18.00086
    [Google Scholar]
  8. Li H. Aide T.M. Ma Y. Liu W. Cao M. Demand for rubber is causing the loss of high diversity rain forest in SW China. Biodivers. Conserv. 2007 16 6 1731 1745 10.1007/s10531‑006‑9052‑7
    [Google Scholar]
  9. Shao L. Xu R. Wang J. Ma Z. Ji Z. Zhang W. Wei H. Zhu C. Wang C. Ma J. Recyclable and reprocessable crosslinked rubber enabled by constructing ionic crosslinked networks. ACS Sustain. Chem. Eng. 2020 8 34 12999 13006 10.1021/acssuschemeng.0c03863
    [Google Scholar]
  10. Zhang G. Zhou X. Liang K. Guo B. Li X. Wang Z. Zhang L. Mechanically robust and recyclable epdm rubber composites by a green cross-linking strategy. ACS Sustain. Chem. Eng. 2019 7 13 11712 11720 10.1021/acssuschemeng.9b01875
    [Google Scholar]
  11. Sarkar P. Bhowmick A.K. Sustainable rubbers and rubber additives. J. Appl. Polym. Sci. 2018 135 24 45701 10.1002/app.45701
    [Google Scholar]
  12. Khavarnia M. Movahed S. O. Butyl rubber reclamation by combined microwave radiation and chemical reagents. J Appl Polymer Sci 2016 133 17 10.1002/app.43363
    [Google Scholar]
  13. Flory P.J. Statistical mechanics of swelling of network structures. J. Chem. Phys. 1950 18 1 108 111 10.1063/1.1747424
    [Google Scholar]
  14. Candau N. Vives E. Fernández A.I. Maspoch M.L. Elastocaloric effect in vulcanized natural rubber and natural/wastes rubber blends. Polymer (Guildf.) 2021 236 124309 10.1016/j.polymer.2021.124309
    [Google Scholar]
  15. Wu W. Wang Y. Vulcanization and thermal properties of silicone rubber/fluorine rubber blends. J. Macromol. Sci. Part B Phys. 2019 58 6 579 591 10.1080/00222348.2019.1609214
    [Google Scholar]
  16. Zhang X.M. Feng L.F. Hoppe S. Hu G.H. Local residence time, residence revolution, and residence volume distributions in twin‐screw extruders. Polym. Eng. Sci. 2008 48 1 19 28 10.1002/pen.20812
    [Google Scholar]
  17. Prut E.V. Erina N.A. Karger-Kocsis J. Medintseva T.I. Effects of blend composition and dynamic vulcanization on the morphology and dynamic viscoelastic properties of PP/EPDM blends. J. Appl. Polym. Sci. 2008 109 2 1212 1220 10.1002/app.28158
    [Google Scholar]
  18. Amin S. Amin M. Thermoplastic Elastomeric (TPE) materials and their use in outdoor electrical insulation. Rev. Adv. Mater. Sci. 2011 29
    [Google Scholar]
  19. Antunes C.F. Machado A.V. van Duin M. Morphology development and phase inversion during dynamic vulcanisation of EPDM/PP blends. Eur. Polym. J. 2011 47 7 1447 1459 10.1016/j.eurpolymj.2011.04.005
    [Google Scholar]
  20. Ma L. Liu C. Dou R. Yin B. Significantly improved high dielectric MWCNTs filled PVDF/PS/HDPE composites via constructing double bi-continuous structure. Compos. Part B Eng. 2021 224 109158 10.1016/j.compositesb.2021.109158
    [Google Scholar]
  21. Legge N.R. Holden G. Schroeder H.E. Book review of thermoplastic elastomers—A comprehensive review. J. Polym. Sci. C 1989 27 11 470 470 10.1002/pol.1989.140271118
    [Google Scholar]
  22. Liao F.S. Su A.C. Hsu T.C.J. Damping behaviour of dynamically cured butyl rubber/polypropylene blends. Polymer (Guildf.) 1994 35 12 2579 2586 10.1016/0032‑3861(94)90382‑4
    [Google Scholar]
  23. Coran A.Y. Patel R. Rubber-Thermoplastic Compositions. Part I. EPDM-Polypropylene Thermoplastic Vulcanizates. Rubber Chem. Technol. 1980 53 1 141 150 10.5254/1.3535023
    [Google Scholar]
  24. Kim M. Gu B. Hong S. Determination of post-necking stress-strain relationship for zirconium low-oxidation based on actual cross-section measurements by DIC. J. Mech. Sci. Technol. 2020 34 10 4211 4217 10.1007/s12206‑020‑0913‑x
    [Google Scholar]
  25. Kamaya M. J-integral estimation by reference plastic slope method for poly-linear stress-strain curves. Int. J. Press. Vessels Piping 2021 191 104366 10.1016/j.ijpvp.2021.104366
    [Google Scholar]
  26. Ma L. Yang W. Jiang C. Stretchable conductors of multi-walled carbon nanotubes (MWCNTs) filled thermoplastic vulcanizate (TPV) composites with enhanced electromagnetic interference shielding performance. Compos. Sci. Technol. 2020 195 108195 10.1016/j.compscitech.2020.108195
    [Google Scholar]
  27. Jiang C. Ma L. Polyamide 6‐based thermoplastic vulcanizate for thermostability: An experimental and theoretical investigation. J. Appl. Polym. Sci. 2022 139 9 51718 10.1002/app.51718
    [Google Scholar]
  28. Bhattacharya A.B. Chatterjee T. Naskar K. Automotive applications of thermoplastic vulcanizates. J. Appl. Polym. Sci. 2020 137 27 49181 10.1002/app.49181
    [Google Scholar]
  29. Ma L. Hu J. Dou R. Multiwalled carbon nanotubes filled thermoplastic vulcanizate dielectric elastomer with excellent resilience properties via inhibiting MWCNT network formation. J. Appl. Polym. Sci. 2021 138 13 50129 10.1002/app.50129
    [Google Scholar]
  30. Jin W.S. Sahu P. Park S.M. Jeon J.H. Kim N.I. Lee J.H. Oh J.S. Design of self-healing EPDM/Ionomer thermoplastic vulcanizates by ionic cross-links for automotive application. Polymers (Basel) 2022 14 6 1156 10.3390/polym14061156 35335487
    [Google Scholar]
  31. Müller G. Rieger B. Propene based thermoplastic elastomers by early and late transition metal catalysis. Prog. Polym. Sci. 2002 27 5 815 851 10.1016/S0079‑6700(01)00030‑2
    [Google Scholar]
  32. Xu X. Ma L. Liu C. Bio‐based polylactic acid or epoxy natural rubber thermoplastic vulcanizates with dual interfacial compatibilization networks. Polym. Eng. Sci. 2022 62 6 1987 1998 10.1002/pen.25981
    [Google Scholar]
  33. Wang H.B. Tian H.C. Zhang S.J. Yu B. Ning N.Y. Tian M. Zhang L.Q. Excellent compatibilization effect of a dual reactive compatibilizer on the immiscible MVQ/PP blends. Chin. J. Polym. Sci. 2023 41 7 1133 1141 10.1007/s10118‑023‑2945‑z
    [Google Scholar]
  34. Chen L. Jia Z. Tang Y. Wu L. Luo Y. Jia D. Novel functional silica nanoparticles for rubber vulcanization and reinforcement. Compos. Sci. Technol. 2017 144 11 17 10.1016/j.compscitech.2016.11.005
    [Google Scholar]
  35. Xu X. Ma L. Guo H. Feng C. Wang Y. Mao Z. A predictive model for the relationship between processing conditions and properties of thermoplastic vulcanizates (TPVs) via machine learning. Compos. Sci. Technol. 2023 240 110095 10.1016/j.compscitech.2023.110095
    [Google Scholar]
  36. Tang Z. Zhang C. Wei Q. Weng P. Guo B. Remarkably improving performance of carbon black-filled rubber composites by incorporating MoS2 nanoplatelets. Compos. Sci. Technol. 2016 132 93 100 10.1016/j.compscitech.2016.07.001
    [Google Scholar]
  37. Ning N. Li S. Wu H. Tian H. Yao P. Hu G.H. Tian M. Zhang L. Preparation, microstructure, and microstructure-properties relationship of thermoplastic vulcanizates (TPVs): A review. Prog. Polym. Sci. 2018 79 61 97 10.1016/j.progpolymsci.2017.11.003
    [Google Scholar]
  38. Wu H. Tian M. Zhang L. Tian H. Wu Y. Ning N. Chan T.W. New Understanding of morphology evolution of Thermoplastic Vulcanizate (TPV) during dynamic vulcanization. ACS Sustain. Chem. Eng. 2015 3 1 26 32 10.1021/sc500391g
    [Google Scholar]
  39. Wu H. Tian M. Zhang L. Tian H. Wu Y. Ning N. Hu G.H. Effect of rubber nanoparticle agglomeration on properties of thermoplastic vulcanizates during dynamic vulcanization. Polymers (Basel) 2016 8 4 127 10.3390/polym8040127 30979235
    [Google Scholar]
  40. Shin H. Choi J. Cho M. An efficient multiscale homogenization modeling approach to describe hyperelastic behavior of polymer nanocomposites. Compos. Sci. Technol. 2019 175 128 134 10.1016/j.compscitech.2019.03.015
    [Google Scholar]
  41. Reda H. Chazirakis A. Behbahani A.F. Savva N. Harmandaris V. Mechanical properties of glassy polymer nanocomposites via atomistic and continuum models: The role of interphases. Comput. Methods Appl. Mech. Eng. 2022 395 114905 10.1016/j.cma.2022.114905
    [Google Scholar]
  42. Li Z. Wang Y. Li X. Li Z. Wang Y. Experimental investigation and constitutive modeling of uncured carbon black filled rubber at different strain rates. Polym. Test. 2019 75 117 126 10.1016/j.polymertesting.2019.02.005
    [Google Scholar]
  43. Sakai M. Yamazaki Y. Yamaguchi S. Hayashi J. Kudo K. Mechanical analysis of organic flexible devices by finite element calculation. Phys. Status Solidi. A Appl. Mater. Sci. 2014 211 4 795 799 10.1002/pssa.201330151
    [Google Scholar]
  44. Schiebold M. Schmidt H. Mehner J. A finite element approach for modeling and simulation of CNT/polymer composites. Phys. Status Solidi., A Appl. Mater. Sci. 2019 216 19 1800952 10.1002/pssa.201800952
    [Google Scholar]
  45. Biswakarma J.J.S. Cruz D.A. Bain E.D. Dennis J.M. Andzelm J.W. Lustig S.R. Modeling brittle fractures in epoxy nanocomposites using extended finite element and cohesive zone surface methods. Polymers (Basel) 2021 13 19 3387 10.3390/polym13193387 34641202
    [Google Scholar]
  46. Zhi J. Wang Q. Zhang M. Li M. Jia Y. Coupled analysis on heterogeneous oxidative aging and viscoelastic performance of rubber based on multi‐scale simulation. J. Appl. Polym. Sci. 2019 136 18 47452 10.1002/app.47452
    [Google Scholar]
  47. Makarian K. Santhanam S. Micromechanical modeling of thermo-mechanical properties of high volume fraction particle-reinforced refractory composites using 3D finite element analysis. Ceram. Int. 2020 46 4 4381 4393 10.1016/j.ceramint.2019.10.162
    [Google Scholar]
  48. Ghoreishy M.H.R. Bagheri-Jaghargh M. Naderi G. Soltani S. Finite element modeling of the flow of a rubber compound through an axisymmetric die using the CEF viscoelastic constitutive equation. J. Appl. Polym. Sci. 2012 125 5 3648 3657 10.1002/app.36482
    [Google Scholar]
  49. Liu C. Ma L. He C. Xu X. Prediction of comprehensive mechanical properties of thermoplastic vulcanizate (TPV) with various composition ratios based on a micromechanical method. Mod. Phys. Lett. B 2023 37 8 2250230 10.1142/S021798492250230X
    [Google Scholar]
  50. Banerjee S.S. Kumar K.D. Sikder A.K. Bhowmick A.K. Nanomechanics and origin of rubber elasticity of novel nanostructured thermoplastic elastomeric blends using atomic force microscopy. Macromol. Chem. Phys. 2015 216 15 1666 1674 10.1002/macp.201500173
    [Google Scholar]
  51. Bhattacharya A.B. Raju A.T. Chatterjee T. Naskar K. Development and characterizations of ultra-high molecular weight EPDM/PP based TPV nanocomposites for automotive applications. Polym. Compos. 2020 41 12 4950 4962 10.1002/pc.25765
    [Google Scholar]
  52. Huang H. Ikehara T. Nishi T. Observation of morphology in EPDM/nylon copolymer thermoplastic vulcanizates by atomic force microscopy. J. Appl. Polym. Sci. 2003 90 5 1242 1248 10.1002/app.12629
    [Google Scholar]
  53. Ermakov S. Leora S. Monte Carlo Methods and the Koksma-Hlawka Inequality. Mathematics 2019 7 8 725 10.3390/math7080725
    [Google Scholar]
  54. Rashki M. The soft Monte Carlo method. Appl. Math. Model. 2021 94 558 575 10.1016/j.apm.2021.01.022
    [Google Scholar]
  55. PolyUMod, MCalibration Software Available from: https://www.veryst.com/tags/polyumod-mcalibration-software?page=1
  56. Homaeinezhad M.R. Yaqubi S. Fotoohinia F. FEA based discrete-time sliding mode control of uncertain continuum mechanics MIMO vibrational systems. J. Sound Vibrat. 2019 460 114902 10.1016/j.jsv.2019.114902
    [Google Scholar]
  57. Yu S. Wu S. Fang S. Tang Z. Zhang L. Guo B. Skeletal network enabling new-generation thermoplastic vulcanizates. Adv Mater 2023 35 24 e2300856 10.1002/adma.202300856
    [Google Scholar]
  58. Kong S. Yang H. Wu S. Tang Z. Guo B. Zhang L. In-situ decorating diene-rubber with carbamyl maleamic handles as sacrificial units toward network reinforcement. Polymer (Guildf.) 2023 288 126453 10.1016/j.polymer.2023.126453
    [Google Scholar]
  59. Li Y. Chen J. Cai P. Wen Z. An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation. J. Mater. Chem. A Mater. Energy Sustain. 2018 6 12 4948 4954 10.1039/C7TA10374C
    [Google Scholar]
  60. Hel C.L. Bounor-Legaré V. Catherin M. Lucas A. Thèvenon A. Cassagnau P. TPV: A new insight on the rubber morphology and mechanic/elastic properties. Polymers (Basel) 2020 12 10 2315 10.3390/polym12102315 33050464
    [Google Scholar]
  61. Xu C. Wang Y. Lin B. Liang X. Chen Y. Thermoplastic vulcanizate based on poly(vinylidene fluoride) and methyl vinyl silicone rubber by using fluorosilicone rubber as interfacial compatibilizer. Mater. Des. 2015 88 170 176 10.1016/j.matdes.2015.08.116
    [Google Scholar]
  62. Peng Z. Liang X. Zhang Y. Zhang Y. Reinforcement of EPDM by in situ prepared zinc dimethacrylate. J. Appl. Polym. Sci. 2002 84 7 1339 1345 10.1002/app.10112
    [Google Scholar]
  63. Chen Y. Xu C. Cao L. Wang Y. Cao X. PP/EPDM-based dynamically vulcanized thermoplastic olefin with zinc dimethacrylate: Preparation, rheology, morphology, crystallization and mechanical properties. Polym. Test. 2012 31 6 728 736 10.1016/j.polymertesting.2012.05.010
    [Google Scholar]
  64. Xu C. Huang X. Li C. Chen Y. Lin B. Liang X. Design of "Zn2+ Salt-Bondings" cross-linked carboxylated styrene butadiene rubber with reprocessing and recycling ability via rearrangements of ionic cross-linkings. ACS Sustain Chem Eng 2016 4 112 10.1021/acssuschemeng.6b01897.
    [Google Scholar]
  65. Peng T. Huang J. Gong Z. Chen X. Chen Y. Self-healing of reversibly cross-linked thermoplastic vulcanizates. Mater. Chem. Phys. 2022 292 126804 10.1016/j.matchemphys.2022.126804
    [Google Scholar]
/content/journals/cms/10.2174/0126661454335122240921021158
Loading
/content/journals/cms/10.2174/0126661454335122240921021158
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test