Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Objective

The objective of this work was to study in more detail the dielectric permittivity and dielectric losses at different frequencies. It is well known that adding ions increases the dielectric constant and increases the dielectric loss as well as conductivity. Furthermore, the real part of the dielectric constant decreases with increasing frequency. Dielectrics are used as a capacitor for storing energy and a transformer for insulating and cooling agents. To enhance the performance of a semiconductor device, high-permittivity dielectric materials are used. Another aim of this study was to gain a better understanding of how frequency influences the dielectric and electrical properties and what are the mathematical forms of these dependencies. With this aim, magnetic mixed metal oxide systems ZnMnNiFeO (x=0.0, 0.25, 0.5, 0.75, and 1.0) have been synthesized in this work using wet chemical approaches. The prepared mixed-metal oxide nanomaterials have been characterized using analytical techniques, ., XRD, FT-IR, SEM, TEM, VSM, TGA/DTA, .

Methods

Nanoparticles of ZnMnNiFeO (x = 0.0, 0.25, 0.5, 0.75, and 1.0) have been synthesized using the lucrative as well as eco-friendly chemical sol-gel technique. According to the Debye-Scherrer equation, the generated nanoparticles had an average crystallite size of 34 nm, and the ferrite sample showed a cubic structure. Two absorption bands at 411-455 and 595 cm-1 in FT-IR spectroscopy have evidenced the aforementioned structure to exist in the manufactured samples. The magnetic curves demonstrated that after nickel replacement, the values of coercivity and saturation magnetization altered. Between 20 Hz and 1 MHz, a dielectric behavior demonstrated conductivity and dielectric dispersion owing to interfacial polarization, as well as the interior of grain boundaries.

Results

In the present case, it has been observed that the dielectric behavior decreased with increasing Ni concentration in the above-synthesized compositions. Such change may be due to the increase in resistivity of Zn-Mn ferrite with the substitution of nickel concentration and it has indicated the dielectric behavior to be directly proportional to the square root of conductivity.

Conclusion

Current research has demonstrated that ferrite nanoparticles have sparked substantial interest due to their high surface-to-volume ratio, distinctive tunable capabilities, hydrophilic nature, biocompatibility, and exceptional magnetic properties. The samples' structural, microstructural, magnetic, and electrical characteristics, have also been examined.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454266022231207111038
2024-01-11
2025-06-28
Loading full text...

Full text loading...

References

  1. BaigN. IrshadK. WailF. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges.Mater Adv2021618211871
    [Google Scholar]
  2. RehmanA. ShaukatS.F. HaidyrahA.S. AkhtarM.N. AhmadM. Synthesis and investigations of structural, magnetic and dielectric properties of Cr-substituted W-type Hexaferrites for high frequency applications.J. Electroceram.20214639310610.1007/s10832‑021‑00246‑7
    [Google Scholar]
  3. JungJ. RajendraK. Seog-JinS. Magnetic scaffolds of polycaprolactone with functionalized magnetite nanoparticles: Physicochemical, mechanical, and biological properties effective for bone regeneration.RSC Advances20143341732517336
    [Google Scholar]
  4. AnilaI. MathewM.J. Study on the physico-chemical properties, magnetic phase resolution and cytotoxicity behavior of chitosan-coated cobalt ferrite nanocubes.Appl. Surf. Sci.202155614979110.1016/j.apsusc.2021.149791
    [Google Scholar]
  5. QiS. GuoH. FuJ. XieY. ZhuM. YuM. 3D printed shape-programmable magneto-active soft matter for biomimetic applications.Compos. Sci. Technol.202018810797310.1016/j.compscitech.2019.107973
    [Google Scholar]
  6. DasP. GangulyS. MargelS. GedankenA. Tailor made magnetic nanolights: Fabrication to cancer theranostics applications.Nanoscale Adv.20213246762679610.1039/D1NA00447F 36132370
    [Google Scholar]
  7. WuW. HeQ. JiangC. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies.Nanoscale Res. Lett.200831139741510.1007/s11671‑008‑9174‑9 21749733
    [Google Scholar]
  8. LuA.H. SalabasE.L. SchüthF. Magnetic nanoparticles: Synthesis, protection, functionalization, and application.Angew. Chem. Int. Ed.20074681222124410.1002/anie.200602866 17278160
    [Google Scholar]
  9. KongL.B. LiS. ZhangT.S. ZhaiJ.W. BoeyF.Y.C. MaJ. Electrically tunable dielectric materials and strategies to improve their performances.Prog. Mater. Sci.201055884089310.1016/j.pmatsci.2010.04.004
    [Google Scholar]
  10. GusainR. GuptaK. JoshiP. KhatriO.P. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review.Adv. Colloid Interface Sci.201927210200910.1016/j.cis.2019.102009 31445351
    [Google Scholar]
  11. DhandaN. ThakurP. Aidan SunA-C. ThakurA. Structural, optical and magnetic properties along with antifungal activity of Ag-doped Ni-Co nanoferrites synthesized by eco-friendly route.J. Magn. Magn. Mater.202357217059810.1016/j.jmmm.2023.170598
    [Google Scholar]
  12. ArumughamN. MariappanA. EswaranJ. DanielS. KanthapazhamR. KathirvelP. Nickel ferrite-based composites and its photocatalytic application-a review.Journal of Hazardous Materials Advances2022810015610.1016/j.hazadv.2022.100156
    [Google Scholar]
  13. GuijarroN. Evaluating spinel ferrites MFe2O4 (M = Cu, Mg, Zn) as photoanodes for solar water oxidation: Prospects and limitations.Energy Fuels201821103117
    [Google Scholar]
  14. ŠepelákV. WildeL. SteinikeU. BeckerK.D. Thermal stability of the non-equilibrium cation distribution in nanocrystalline high-energy milled spinel ferrite.Mater. Sci. Eng. A2004375–37712, 865-868
    [Google Scholar]
  15. KefeniK.K. MsagatiT.A.M. NkambuleT.T.I. MambaB.B. Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity.Mater. Sci. Eng. C202010711031410.1016/j.msec.2019.110314 31761184
    [Google Scholar]
  16. PhamT.N. HuyT.Q. LeA.T. Spinel ferrite (AFe2O4)-based heterostructured designs for lithium-ion battery, environmental monitoring, and biomedical applications.RSC Advances20201052316223166110.1039/D0RA05133K 35520663
    [Google Scholar]
  17. AmiriS. ShokrollahiH. The role of cobalt ferrite magnetic nanoparticles in medical science.Mater. Sci. Eng. C20133311810.1016/j.msec.2012.09.003 25428034
    [Google Scholar]
  18. GhasemiR. EcheverríaJ. Pérez-LandazábalJ.I. Beato-LopezJ.J. NaseriM. Gómez-PoloC. Effect of Cu substitution on the magnetic and magnetic induction heating response of CdFe2O4 spinel ferrite.J. Magn. Magn. Mater.202049916620110.1016/j.jmmm.2019.166201
    [Google Scholar]
  19. MuscasG. YaacoubN. ConcasG. Evolution of the magnetic structure with chemical composition in spinel iron oxide nanoparticles.Nanoscale2015732135761358510.1039/C5NR02723C 26203789
    [Google Scholar]
  20. AmiriM. Salavati-NiasariM. AkbariA. Magnetic nanocarriers: Evolution of spinel ferrites for medical applications.Adv. Colloid Interface Sci.2019265294410.1016/j.cis.2019.01.003 30711796
    [Google Scholar]
  21. MuscasG. CongiuF. ConcasG. The boundary between volume and surface-driven magnetic properties in spinel iron oxide nanoparticles.Nanoscale Res. Lett.20221719810.1186/s11671‑022‑03737‑w 36219264
    [Google Scholar]
  22. LiJ. YuanH. LiG. LiuY. LengJ. Cation distribution dependence of magnetic properties of sol–gel prepared MnFe2O4 spinel ferrite nanoparticles.J. Magn. Magn. Mater.2010322213396340010.1016/j.jmmm.2010.06.035
    [Google Scholar]
  23. SrinivasC. DeeptyM. PrasadS.A.V. Study of structural, vibrational, elastic and magnetic properties of uniaxial anisotropic Ni-Zn nanoferrites in the context of cation distribution and magnetocrystalline anisotropy.J. Alloys Compd.202187315974810.1016/j.jallcom.2021.159748
    [Google Scholar]
  24. AbouzirE. ElansaryM. BelaicheM. JaziriH. Magnetic and structural properties of single-phase Gd 3+ -substituted Co–Mg ferrite nanoparticles.RSC Advances20201019112441125610.1039/D0RA01841D 35495325
    [Google Scholar]
  25. Kamta TedjieukengH.M. TsobnangP.K. FomekongR.L. Structural characterization and magnetic properties of undoped and copper-doped cobalt ferrite nanoparticles prepared by the octanoate coprecipitation route at very low dopant concentrations.RSC Advances2018867386213863010.1039/C8RA08532C 35559057
    [Google Scholar]
  26. JainS. ShahJ. DhakateS.R. GuptaG. SharmaC. KotnalaR.K. Environment-friendly mesoporous magnetite nanoparticles-based hydroelectric cell.J. Phys. Chem. C2018122115908591610.1021/acs.jpcc.7b12561
    [Google Scholar]
  27. IftikharA. IslamM.U. AwanM.S. AhmadM. NaseemS. Asif IqbalM. Synthesis of super paramagnetic particles of Mn1-xMgxFe2O4 ferrites for hyperthermia applications.J. Alloys Compd.201460111611910.1016/j.jallcom.2014.02.138
    [Google Scholar]
  28. PatadeS.R. AndhareD.D. KhedkarM.V. JadhavS.A. JadhavK.M. Synthesis and characterizations of magnetically inductive Mn-Zn spinel ferrite nanoparticles for hyperthermia applications.J. Mater. Sci. Mater. Electron.20213210136851369210.1007/s10854‑021‑05946‑y
    [Google Scholar]
  29. OgnjanovićM. StankovićD.M. MingY. Bifunctional (Zn,Fe)3O4 nanoparticles: Tuning their efficiency for potential application in reagentless glucose biosensors and magnetic hyperthermia.J. Alloys Compd.201977745446210.1016/j.jallcom.2018.10.369
    [Google Scholar]
  30. GonçalvesJ.M. de FariaL.V. NascimentoA.B. Sensing performances of spinel ferrites MFe2O4 (M = Mg, Ni, Co, Mn, Cu and Zn) based electrochemical sensors: A review.Anal. Chim. Acta2022123334036210.1016/j.aca.2022.340362 36283771
    [Google Scholar]
  31. KimD.H. ZengH. NgT.C. BrazelC.S. T1 and T2 relaxivities of succimer-coated MFe23+O4 (M=Mn2+, Fe2+ and Co2+) inverse spinel ferrites for potential use as phase-contrast agents in medical MRI.J. Magn. Magn. Mater.2009321233899390410.1016/j.jmmm.2009.07.057
    [Google Scholar]
  32. QinH. HeY. XuP. Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field.Adv. Colloid Interface Sci.202129410248610.1016/j.cis.2021.102486 34274724
    [Google Scholar]
  33. ReddyD.H.K. YunY.S. Spinel ferrite magnetic adsorbents: Alternative future materials for water purification?Coord. Chem. Rev.20163159011110.1016/j.ccr.2016.01.012
    [Google Scholar]
  34. ZhangS. JiangW. LiY. Highly-sensitivity acetone sensors based on spinel-type oxide (NiFe2O4) through optimization of porous structure.Sens. Actuators B Chem.201929126627410.1016/j.snb.2019.04.090
    [Google Scholar]
  35. TatarchukT. MyslinM. MironyukI. Synthesis, morphology, crystallite size and adsorption properties of nanostructured Mg–Zn ferrites with enhanced porous structure.J. Alloys Compd.202081915294510.1016/j.jallcom.2019.152945
    [Google Scholar]
  36. BalaT. SankarC.R. BaidakovaM. Cobalt and magnesium ferrite nanoparticles: preparation using liquid foams as templates and their magnetic characteristics.Langmuir20052123106381064310.1021/la051595k 16262331
    [Google Scholar]
  37. NaeemM. ShahN.A. GulI.H. MaqsoodA. Structural, electrical and magnetic characterization of Ni–Mg spinel ferrites.J. Alloys Compd.20094871-273974310.1016/j.jallcom.2009.08.057
    [Google Scholar]
  38. BushkovaV.S. YaremiyI.P. Magnetic, electric, mechanical, and optical properties of NiCr x Fe 2−x O 4 ferrites.J. Magn. Magn. Mater.2018461374710.1016/j.jmmm.2018.04.025
    [Google Scholar]
  39. BuenoA.R. GregoriM.L. NóbregaM.C.S. Effect of Mn substitution on the microstructure and magnetic properties of Ni0.50−xZn0.50−xMn2xFe2O4 ferrite prepared by the citrate–nitrate precursor method.Mater. Chem. Phys.20071052-322923310.1016/j.matchemphys.2007.04.047
    [Google Scholar]
  40. NamP.H. LuL.T. LinhP.H. Polymer-coated cobalt ferrite nanoparticles: Synthesis, characterization, and toxicity for hyperthermia applications.New J. Chem.20184217145301454110.1039/C8NJ01701H
    [Google Scholar]
  41. HajalilouA. MazlanS.A. A review on preparation techniques for synthesis of nanocrystalline soft magnetic ferrites and investigation on the effects of microstructure features on magnetic properties.Appl. Phys., A Mater. Sci. Process.2016122768010.1007/s00339‑016‑0217‑2
    [Google Scholar]
  42. HarifiT. MontazerM. In situ synthesis of iron oxide nanoparticles on polyester fabric utilizing color, magnetic, antibacterial and sono-Fenton catalytic properties.J. Mater. Chem. B Mater. Biol. Med.20142327228210.1039/C3TB21445A 32261506
    [Google Scholar]
  43. NasrinS. ChowdhuryF.U.Z. HoqueS.M. Study of hyperthermia temperature of manganese-substituted cobalt nano ferrites prepared by chemical co-precipitation method for biomedical application.J. Magn. Magn. Mater.201947912613410.1016/j.jmmm.2019.02.010
    [Google Scholar]
  44. MazaríoE. Sánchez-MarcosJ. MenéndezN. High specific absorption rate and transverse relaxivity effects in manganese ferrite nanoparticles obtained by an electrochemical route.J. Phys. Chem. C2015119126828683410.1021/jp510937r
    [Google Scholar]
  45. HaqueS. TripathyS. PatraC.R. Manganese-based advanced nanoparticles for biomedical applications: Future opportunity and challenges.Nanoscale20211339164051642610.1039/D1NR04964J 34586121
    [Google Scholar]
  46. SudheeshV.D. ThomasN. RoonaN. BaghyaP.K. SebastianV. Synthesis, characterization and influence of fuel to oxidizer ratio on the properties of spinel ferrite (MFe2O4, M = Co and Ni) prepared by solution combustion method.Ceram. Int.20174317150021500910.1016/j.ceramint.2017.08.023
    [Google Scholar]
  47. ChandP. VaishS. KumarP. Structural, optical and dielectric properties of transition metal (MFe2O4; M = Co, Ni and Zn) nanoferrites.Physica B2017524536310.1016/j.physb.2017.08.060
    [Google Scholar]
  48. ShanigaramM. KodamU. NohJ.S. NamY.W. Cation distribution in MFe2O4 (M = Ni, Co): X-ray diffraction, electron spectroscopy, Raman, and magnetization studies.J. Phys. Chem. Solids202217111103610.1016/j.jpcs.2022.111036
    [Google Scholar]
  49. DingR.R. LiW-Q. HeC-S. Oxygen vacancy on hollow sphere CuFe2O4 as an efficient Fenton-like catalysis for organic pollutant degradation over a wide pH range.Appl. Catal. B202129112006910.1016/j.apcatb.2021.120069
    [Google Scholar]
  50. HankareP.P. PatilR.P. JadhavA.V. GaradkarK.M. SasikalaR. Enhanced photocatalytic degradation of methyl red and thymol blue using titania–alumina–zinc ferrite nanocomposite.Appl. Catal. B20111073-433333910.1016/j.apcatb.2011.07.033
    [Google Scholar]
  51. DuP. EisenbergR. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges.Energy Environ. Sci.2012536012602110.1039/c2ee03250c
    [Google Scholar]
  52. YaseenW. UllahN. XieM. Ni-Fe-Co based mixed metal/metal-oxides nanoparticles encapsulated in ultrathin carbon nanosheets: A bifunctional electrocatalyst for overall water splitting.Surf. Interfaces20212610136110.1016/j.surfin.2021.101361
    [Google Scholar]
  53. ThakurA. KumarP. ThakurP. Enhancement of magnetic properties of Ni0.5Zn0.5Fe2O4 nanoparticles prepared by the co-precipitation method.Ceram. Int.2016429106641067010.1016/j.ceramint.2016.03.173
    [Google Scholar]
  54. TorkianS. GhasemiA. Shoja RazaviR. Cation distribution and magnetic analysis of wideband microwave absorptive Cox Ni1-x Fe2O4 ferrites.Ceram. Int.20174396987699510.1016/j.ceramint.2017.02.124
    [Google Scholar]
  55. HuangC. Structural and magnetic characterization of Bi1-x Lax FeO3 and BiFe1-y Mny O3 nanoparticles synthesized via a sol-gel method.Phase Transit.201992216417110.1080/01411594.2019.1566545
    [Google Scholar]
  56. XuY. YuY. SongC. One-step preparation of efficient SiO2/PVDF membrane by sol-gel strategy for oil/] water separation under harsh environments.Polymer202226012540210.1016/j.polymer.2022.125402
    [Google Scholar]
  57. Cordero CastañoF. IgalK. ArrecheR. VázquezP. Synthesis of silica-based solids by sol-gel technique using lemon bio-waste: juice, peels and ethanolic extract.Curr Res Green Sustainable Chem.2022510032210.1016/j.crgsc.2022.100322
    [Google Scholar]
  58. BaoumA. AminM.S. Amended photocatalytic degradation of Tetracycline applying sol-gel assembled CuO@rGO nanocomposite under visible light.Opt. Mater.202212311195610.1016/j.optmat.2021.111956
    [Google Scholar]
  59. ZhangL. WanW. JiangX. Enhancement of oxidation and corrosion resistance of flaky carbonyl iron powder via SiO2/KH560/PDMS coating applied with sol-gel.Surf. Coat. Tech.202243712834610.1016/j.surfcoat.2022.128346
    [Google Scholar]
  60. ShenH. ShiX. WangZ. Defects control and origins of blue and green emissions in sol-gel ZnO thin films.Vacuum202220211120110.1016/j.vacuum.2022.111201
    [Google Scholar]
  61. CiriminnaR. FidalgoA. PandarusV. BélandF. IlharcoL.M. PagliaroM. The sol-gel route to advanced silica-based materials and recent applications.Chem. Rev.201311386592662010.1021/cr300399c 23782155
    [Google Scholar]
  62. MarinsA.A.L. BoasquevisqueL.M. MuriE.J.B. FreitasM.B.J.G. Environmentally friendly recycling of spent Ni–MH battery anodes and electrochemical characterization of nickel and rare earth oxides obtained by sol–gel synthesis.Mater. Chem. Phys.202228012582110.1016/j.matchemphys.2022.125821
    [Google Scholar]
  63. LiJ. LiT. ZengY. A novel sol-gel coating via catechol/lysine polymerization for long-lasting corrosion protection of Mg alloy AZ31.Colloids Surf. A Physicochem. Eng. Asp.202365613036110.1016/j.colsurfa.2022.130361
    [Google Scholar]
  64. SuX. LiH. LaiX. Vapor–liquid sol–gel approach to fabricating highly durable and robust superhydrophobic Polydimethylsiloxane@Silica surface on polyester textile for oil–water separation.ACS Appl. Mater. Interfaces2017933280892809910.1021/acsami.7b08920 28758736
    [Google Scholar]
  65. ZhaoJ. ChenY. YaoY. Preparation of the polyelectrolyte complex hydrogel of biopolymers via a semi-dissolution acidification sol-gel transition method and its application in solid-state supercapacitors.J. Power Sources201837860360910.1016/j.jpowsour.2018.01.005
    [Google Scholar]
  66. HankareP.P. PatilR.P. SankpalU.B. Investigation of structural and magnetic properties of nanocrystalline manganese substituted lithium ferrites.J. Solid State Chem.2009182123217322110.1016/j.jssc.2009.08.034
    [Google Scholar]
  67. WaldronR.D. Infrared spectra of ferrites.Phys. Rev.19559961727173510.1103/PhysRev.99.1727
    [Google Scholar]
  68. WagnerK.W. Zur theorie der unvollkommenen dielektrika.Ann. Phys.1913345581785510.1002/andp.19133450502
    [Google Scholar]
  69. AhmadS.I. Nano cobalt ferrites: Doping, Structural, Low-temperature, and room temperature magnetic and dielectric properties-a comprehensive review.J. Magn. Magn. Mater.202256216984010.1016/j.jmmm.2022.169840
    [Google Scholar]
  70. HedaI. The effect of transition metal substitution on the structural, elastic, optical, electrical and dielectric properties of M0.5Fe2·5O4 (M=Co and Mg) synthesized by the auto combustion method.Mater. Chem. Phys.2023296114
    [Google Scholar]
  71. HankareP.P. PatilR.P. SankpalU.B. Magnetic and dielectric properties of nanophase manganese-substituted lithium ferrite.J. Magn. Magn. Mater.2009321193270327310.1016/j.jmmm.2009.05.074
    [Google Scholar]
/content/journals/cms/10.2174/0126661454266022231207111038
Loading
/content/journals/cms/10.2174/0126661454266022231207111038
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test