Skip to content
2000
Volume 17, Issue 5
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Polysaccharides from marine sources have been increasingly used in recent research due to their availability, affordability, biocompatibility, and biodegradability. These features make them promising candidates for use in nanotechnology in a wide variety of drug delivery systems, including those for gene therapy, tissue engineering, cancer therapy, wound dressing, biosensors, and water purification. Marine polysaccharides are of particular interest due to their distinct physicochemical and biological properties like chitin, alginate, carrageenan, fucoidan, and chitosan has inspired an array of nanostructures. This article summarizes the history, chemical composition, biological functions, and nanomedical uses of these marine polysaccharides. Marine polysaccharides are the topic of this review due to their potential utility in gene transfer.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454257825231012191447
2023-10-24
2025-01-19
Loading full text...

Full text loading...

References

  1. AppeltansW. AhyongS.T. AndersonG. The magnitude of global marine species diversity.Curr. Biol.201222232189220210.1016/j.cub.2012.09.036 23159596
    [Google Scholar]
  2. ZhangG. LiJ. ZhuT. GuQ. LiD. Advanced tools in marine natural drug discovery.Curr. Opin. Biotechnol.201642132310.1016/j.copbio.2016.02.021 26954946
    [Google Scholar]
  3. KongD.X. JiangY.Y. ZhangH.Y. Marine natural products as sources of novel scaffolds: achievement and concern.Drug Discov. Today20101521-2288488610.1016/j.drudis.2010.09.002 20869461
    [Google Scholar]
  4. MartinsA. VieiraH. GasparH. SantosS. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success.Mar. Drugs20141221066110110.3390/md12021066 24549205
    [Google Scholar]
  5. CardosoM. CostaR. ManoJ. Marine origin polysaccharides in drug delivery systems.Mar. Drugs20161423410.3390/md14020034 26861358
    [Google Scholar]
  6. MolinskiT.F. DalisayD.S. LievensS.L. SaludesJ.P. Drug development from marine natural products.Nat. Rev. Drug Discov.200981698510.1038/nrd2487 19096380
    [Google Scholar]
  7. GanesanA. The impact of natural products upon modern drug discovery.Curr. Opin. Chem. Biol.200812330631710.1016/j.cbpa.2008.03.016 18423384
    [Google Scholar]
  8. SimonC. DanielR. Achievements and new knowledge unraveled by metagenomic approaches.Appl. Microbiol. Biotechnol.200985226527610.1007/s00253‑009‑2233‑z 19760178
    [Google Scholar]
  9. XiongZ.Q. WangJ.F. HaoY.Y. WangY. Recent advances in the discovery and development of marine microbial natural products.Mar. Drugs2013111270071710.3390/md11030700 23528949
    [Google Scholar]
  10. AshforthE.J. FuC. LiuX. Bioprospecting for antituberculosis leads from microbial metabolites.Nat. Prod. Rep.201027111709171910.1039/c0np00008f 20922218
    [Google Scholar]
  11. ArpiccoS. BattagliaL. BrusaP. Recent studies on the delivery of hydrophilic drugs in nanoparticulate systems.J. Drug Deliv. Sci. Technol.20163229831210.1016/j.jddst.2015.09.004
    [Google Scholar]
  12. PereiraD. Valentão P, Andrade P. Nano- and microdelivery systems for marine bioactive lipids.Mar. Drugs201412126014602710.3390/md12126014 25522314
    [Google Scholar]
  13. LaurienzoP. Marine polysaccharides in pharmaceutical applications: an overview.Mar. Drugs2010892435246510.3390/md8092435 20948899
    [Google Scholar]
  14. El-AneedA. An overview of current delivery systems in cancer gene therapy.J. Control. Release200494111410.1016/j.jconrel.2003.09.013 14684267
    [Google Scholar]
  15. OlefskyJ.M. Gene therapy for rats and mice.Nature2000408681142042110.1038/35044177 11100710
    [Google Scholar]
  16. WolffJ.A. BudkerV. The mechanism of naked DNA uptake and expression.Adv. Genet.20055412010.1016/S0065‑2660(05)54001‑X 16096005
    [Google Scholar]
  17. BartelM.A. WeinsteinJ.R. SchafferD.V. Directed evolution of novel adeno-associated viruses for therapeutic gene delivery.Gene Ther.201219669470010.1038/gt.2012.20 22402323
    [Google Scholar]
  18. LehrmanS. Virus treatment questioned after gene therapy death.Nature1999401675351751810.1038/43977 10524611
    [Google Scholar]
  19. SunJ.Y. Anand-JawaV. ChatterjeeS. WongK.K.Jr Immune responses to adeno-associated virus and its recombinant vectors.Gene Ther.2003101196497610.1038/sj.gt.3302039 12756417
    [Google Scholar]
  20. CunhaL. GrenhaA. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications.Mar. Drugs20161434210.3390/md14030042 26927134
    [Google Scholar]
  21. de Jesus RaposoM. de MoraisA. de MoraisR. Marine polysaccharides from algae with potential biomedical applications.Mar. Drugs20151352967302810.3390/md13052967 25988519
    [Google Scholar]
  22. RaemdonckK. MartensT.F. BraeckmansK. DemeesterJ. De SmedtS.C. Polysaccharide-based nucleic acid nanoformulations.Adv. Drug Deliv. Rev.20136591123114710.1016/j.addr.2013.05.002 23680381
    [Google Scholar]
  23. DumitriuS. Polysaccharides: structural diversity and functional versatility.CRC press200410.1201/9781420030822
    [Google Scholar]
  24. GoodarziN. VarshochianR. KamaliniaG. AtyabiF. DinarvandR. A review of polysaccharide cytotoxic drug conjugates for cancer therapy.Carbohydr. Polym.20139221280129310.1016/j.carbpol.2012.10.036 23399156
    [Google Scholar]
  25. MizrahyS. PeerD. Polysaccharides as building blocks for nanotherapeutics.Chem. Soc. Rev.20124172623264010.1039/C1CS15239D 22085917
    [Google Scholar]
  26. LiuZ. JiaoY. WangY. ZhouC. ZhangZ. Polysaccharides-based nanoparticles as drug delivery systems.Adv. Drug Deliv. Rev.200860151650166210.1016/j.addr.2008.09.001 18848591
    [Google Scholar]
  27. KosarajuS.L. Colon targeted delivery systems: review of polysaccharides for encapsulation and delivery.Crit. Rev. Food Sci. Nutr.200545425125810.1080/10408690490478091 16047493
    [Google Scholar]
  28. Alvarez-LorenzoC. Blanco-FernandezB. PugaA.M. ConcheiroA. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery.Adv. Drug Deliv. Rev.20136591148117110.1016/j.addr.2013.04.016 23639519
    [Google Scholar]
  29. BuschmannM.D. MerzoukiA. LavertuM. ThibaultM. JeanM. DarrasV. Chitosans for delivery of nucleic acids.Adv. Drug Deliv. Rev.20136591234127010.1016/j.addr.2013.07.005 23872012
    [Google Scholar]
  30. CaoX. HouD. WangL. Effects and molecular mechanism of chitosan-coated levodopa nanoliposomes on behavior of dyskinesia rats.Biol. Res.20164913210.1186/s40659‑016‑0093‑4 27378167
    [Google Scholar]
  31. GangulyK. ChaturvediK. MoreU.A. NadagoudaM.N. AminabhaviT.M. Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics.J. Control. Release201419316217310.1016/j.jconrel.2014.05.014 24845128
    [Google Scholar]
  32. YangL. WangP. WangH. Fucoidan derived from Undaria pinnatifida induces apoptosis in human hepatocellular carcinoma SMMC-7721 cells via the ROS-mediated mitochondrial pathway.Mar. Drugs20131161961197610.3390/md11061961 23752353
    [Google Scholar]
  33. LiQ. DunnE.T. GrandmaisonE.W. GoosenM.F.A. Applications and properties of chitosan.J. Bioact. Compat. Polym.19927437039710.1177/088391159200700406
    [Google Scholar]
  34. LeungT.C.Y. WongC.K. XieY. Green synthesis of silver nanoparticles using biopolymers, carboxymethylated-curdlan and fucoidan.Mater. Chem. Phys.2010121340240510.1016/j.matchemphys.2010.02.026
    [Google Scholar]
  35. YounesI. RinaudoM. Chitin and chitosan preparation from marine sources. Structure, properties and applications.Mar. Drugs20151331133117410.3390/md13031133 25738328
    [Google Scholar]
  36. ManoJ.F. Stimuli‐responsive polymeric systems for biomedical applications.Adv. Eng. Mater.200810651552710.1002/adem.200700355
    [Google Scholar]
  37. SanejaA. NehateC. AlamN. GuptaP.N. Recent advances in chitosan-based nanomedicines for cancer chemotherapy.In: Chitin and chitosan for regenerative medicine.201622959
    [Google Scholar]
  38. Bernkop-SchnürchA. DünnhauptS. Chitosan-based drug delivery systems.Eur. J. Pharm. Biopharm.201281346346910.1016/j.ejpb.2012.04.007 22561955
    [Google Scholar]
  39. Ravi KumarM.N.V. A review of chitin and chitosan applications.React. Funct. Polym.200046112710.1016/S1381‑5148(00)00038‑9
    [Google Scholar]
  40. MuzzarelliR.A.A. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone.Carbohydr. Polym.200976216718210.1016/j.carbpol.2008.11.002
    [Google Scholar]
  41. RinaudoM. Chitin and chitosan: Properties and applications.Prog. Polym. Sci.200631760363210.1016/j.progpolymsci.2006.06.001
    [Google Scholar]
  42. PillaiC.K.S. PaulW. SharmaC.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation.Prog. Polym. Sci.200934764167810.1016/j.progpolymsci.2009.04.001
    [Google Scholar]
  43. JangM.K. KongB.G. JeongY.I. LeeC.H. NahJ.W. Physicochemical characterization of? -chitin? -chitin, and? -chitin separated from natural resources.J. Polym. Sci. A Polym. Chem.200442143423343210.1002/pola.20176
    [Google Scholar]
  44. QinY. LuX. SunN. RogersR.D. Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers.Green Chem.201012696897110.1039/c003583a
    [Google Scholar]
  45. BarberP.S. GriggsC.S. BonnerJ.R. RogersR.D. Electrospinning of chitin nanofibers directly from an ionic liquid extract of shrimp shells.Green Chem.201315360160710.1039/c2gc36582k
    [Google Scholar]
  46. ShamshinaJ.L. ZavgorodnyaO. ChoudharyH. FryeB. NewburyN. RogersR.D. In search of stronger/cheaper chitin nanofibers through electrospinning of chitin–cellulose composites using an ionic liquid platform.ACS Sustain. Chem.& Eng.2018611147131472210.1021/acssuschemeng.8b03269
    [Google Scholar]
  47. SetoguchiT. KatoT. YamamotoK. KadokawaJ. Facile production of chitin from crab shells using ionic liquid and citric acid.Int. J. Biol. Macromol.201250386186410.1016/j.ijbiomac.2011.11.007 22108289
    [Google Scholar]
  48. WangW.T. ZhuJ. WangX.L. HuangY. WangY.Z. Dissolution behavior of chitin in ionic liquids.J. Macromol. Sci. Part B Phys.201049352854110.1080/00222341003595634
    [Google Scholar]
  49. LiJ. HuangW.C. GaoL. SunJ. LiuZ. MaoX. Efficient enzymatic hydrolysis of ionic liquid pretreated chitin and its dissolution mechanism.Carbohydr. Polym.201921132933510.1016/j.carbpol.2019.02.027 30824097
    [Google Scholar]
  50. UtoT. IdenoueS. YamamotoK. KadokawaJ. Understanding dissolution process of chitin crystal in ionic liquids: theoretical study.Phys. Chem. Chem. Phys.20182031206692067710.1039/C8CP02749H 30059116
    [Google Scholar]
  51. TajiriR. SetoguchiT. WakizonoS. YamamotoK. KadokawaJ.I. Preparation of self-assembled chitin nanofibers by regeneration from ion gels using calcium halide· dihydrate/methanol solutions.J. Biobased Mater. Bioenergy20137565565910.1166/jbmb.2013.1393
    [Google Scholar]
  52. IfukuS. SaimotoH. Chitin nanofibers: preparations, modifications, and applications.Nanoscale20124113308331810.1039/C2NR30383C 22539071
    [Google Scholar]
  53. SilvaS.S. DuarteA.R.C. ManoJ.F. ReisR.L. Design and functionalization of chitin-based microsphere scaffolds.Green Chem.201315113252325810.1039/c3gc41060a
    [Google Scholar]
  54. JayakumarR. PrabaharanM. NairS.V. TamuraH. Novel chitin and chitosan nanofibers in biomedical applications.Biotechnol. Adv.201028114215010.1016/j.biotechadv.2009.11.001 19913083
    [Google Scholar]
  55. BrondaniD. DupontJ. SpinelliA. VieiraI.C. Development of biosensor based on ionic liquid and corn peroxidase immobilized on chemically crosslinked chitin.Sens. Actuators B Chem.2009138123624310.1016/j.snb.2008.12.021
    [Google Scholar]
  56. XieH. ZhangS. LiS. Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2.Green Chem.20068763063310.1039/b517297g
    [Google Scholar]
  57. MallikA.K. ShahruzzamanM. ZamanA. Fabrication of polysaccharide-based materials using ionic liquids and scope for biomedical use.In: Functional polysaccharides for biomedical applications.Woodhead Publishing201913117110.1016/B978‑0‑08‑102555‑0.00004‑2
    [Google Scholar]
  58. SilvaT.H. DuarteA.R.C. Moreira-SilvaJ. ManoJ.F. ReisR.L. Biomaterials from marine-origin biopolymers.In: Biomimetic Approaches for Biomaterials Development.2012123
    [Google Scholar]
  59. SilvaS.S. FernandesE.M. Silva-CorreiaJ. Natural-origin materials for tissue engineering and regenerative medicine.Comprehensive Biomaterials2017II35
    [Google Scholar]
  60. SiewC.K. WilliamsP.A. YoungN.W.G. New insights into the mechanism of gelation of alginate and pectin: charge annihilation and reversal mechanism.Biomacromolecules20056296396910.1021/bm049341l 15762666
    [Google Scholar]
  61. DruryJ.L. DennisR.G. MooneyD.J. The tensile properties of alginate hydrogels.Biomaterials200425163187319910.1016/j.biomaterials.2003.10.002 14980414
    [Google Scholar]
  62. DingC. ZhangM. ZhaoF. ZhangS. Disposable biosensor and biocatalysis of horseradish peroxidase based on sodium alginate film and room temperature ionic liquid.Anal. Biochem.20083781323710.1016/j.ab.2008.03.036 18406831
    [Google Scholar]
  63. ShamshinaJ.L. GurauG. BlockL.E. Chitin–calcium alginate composite fibers for wound care dressings spun from ionic liquid solution.J. Mater. Chem. B Mater. Biol. Med.20142253924393610.1039/C4TB00329B 32261644
    [Google Scholar]
  64. NecasJ. BartosikovaL. Carrageenan: a review.Vet. Med. (Praha)201358418720510.17221/6758‑VETMED
    [Google Scholar]
  65. CampoV.L. KawanoD.F. SilvaD.B.Jr CarvalhoI. Carrageenans: Biological properties, chemical modifications and structural analysis – A review.Carbohydr. Polym.200977216718010.1016/j.carbpol.2009.01.020
    [Google Scholar]
  66. HanD.K. ParkK.D. AhnK.D. JeongS.Y. KimY.H. Preparation and surface characterization of PEO-grafted and heparin-immobilized polyurethanes.J. Biomed. Mater. Res.198923S13Suppl.8710410.1002/jbm.820231309 2722907
    [Google Scholar]
  67. TuR. LuC.L. ThyagarajanK. Kinetic study of collagen fixation with polyepoxy fixatives.J. Biomed. Mater. Res.19932713910.1002/jbm.820270103 8420998
    [Google Scholar]
  68. ChenJ.P. ChuI.M. ShiaoM.Y. HsuB.R.S. FuS.H. Microencapsulation of islets in PEG-amine modified alginate-poly(l-lysine)-alginate microcapsules for constructing bioartificial pancreas.J. Ferment. Bioeng.199886218519010.1016/S0922‑338X(98)80059‑7
    [Google Scholar]
  69. ChandyT. MooradianD.L. RaoG.H.R. Chitosan/polyethylene glycol-alginate microcapsules for oral delivery of hirudin.J. Appl. Polym. Sci.199870112143215310.1002/(SICI)1097‑4628(19981212)70:11<2143:AID‑APP7>3.0.CO;2‑L
    [Google Scholar]
  70. YongC.S. JungJ.H. RheeJ.D. KimC.K. ChoiH.G. Physicochemical characterization and evaluation of buccal adhesive tablets containing omeprazole.Drug Dev. Ind. Pharm.200127544745510.1081/DDC‑100104320 11448052
    [Google Scholar]
  71. SrivastavaR. BrownJ.Q. ZhuH. McShaneM.J. Stabilization of glucose oxidase in alginate microspheres with photoreactive diazoresin nanofilm coatings.Biotechnol. Bioeng.200591112413110.1002/bit.20469 15849694
    [Google Scholar]
  72. MiyazakiS. NakayamaA. OdaM. TakadaM. AttwoodD. Drug release from oral mucosal adhesive tablets of chitosan and sodium alginate.Int. J. Pharm.1995118225726310.1016/0378‑5173(94)00396‑M
    [Google Scholar]
  73. StrandB.L. Gåserød O, Kulseng B, Espevik T, Skjåk-Bræk G. Alginate-polylysine-alginate microcapsules: effect of size reduction on capsule properties.J. Microencapsul.200219561563010.1080/02652040210144243 12433304
    [Google Scholar]
  74. MurataY. SasakiN. MiyamotoE. KawashimaS. Use of floating alginate gel beads for stomach-specific drug delivery.Eur. J. Pharm. Biopharm.200050222122610.1016/S0939‑6411(00)00110‑7 10962231
    [Google Scholar]
  75. ChoiB.Y. ParkH.J. HwangS.J. ParkJ.B. Preparation of alginate beads for floating drug delivery system: effects of CO2 gas-forming agents.Int. J. Pharm.20022391-2819110.1016/S0378‑5173(02)00054‑6 12052693
    [Google Scholar]
  76. Yazdani-PedramM. LagosA. RetuertP.J. Study of the effect of reaction variables on grafting of polyacrylamide onto chitosan.Polym. Bull.2002481939810.1007/s00289‑002‑0006‑2
    [Google Scholar]
  77. HuY. JiangX. DingY. GeH. YuanY. YangC. Synthesis and characterization of chitosan–poly(acrylic acid) nanoparticles.Biomaterials200223153193320110.1016/S0142‑9612(02)00071‑6 12102191
    [Google Scholar]
  78. ChunM.K. ChoC.S. ChoiH.K. Mucoadhesive drug carrier based on interpolymer complex of poly(vinyl pyrrolidone) and poly(acrylic acid) prepared by template polymerization.J. Control. Release200281332733410.1016/S0168‑3659(02)00078‑0 12044571
    [Google Scholar]
  79. AhnJ.S. ChoiH.K. ChoC.S. A novel mucoadhesive polymer prepared by template polymerization of acrylic acid in the presence of chitosan.Biomaterials200122992392810.1016/S0142‑9612(00)00256‑8 11311011
    [Google Scholar]
  80. ShojaeiA.H. PaulsonJ. HonaryS. Evaluation of poly(acrylic acid-co-ethylhexyl acrylate) films for mucoadhesive transbuccal drug delivery: factors affecting the force of mucoadhesion.J. Control. Release2000672-322323210.1016/S0168‑3659(00)00216‑9 10825556
    [Google Scholar]
  81. PenicheC. Argüelles-MonalW. DavidenkoN. SastreR. GallardoA. San Román J. Self-curing membranes of chitosan/PAA IPNs obtained by radical polymerization: preparation, characterization and interpolymer complexation.Biomaterials199920201869187810.1016/S0142‑9612(99)00048‑4 10514063
    [Google Scholar]
  82. MumperR.J. HuffmanA.S. PuolakkainenP.A. BouchardL.S. GombotzW.R. Calcium-alginate beads for the oral delivery of transforming growth factor-β1 (TGF-β1): stabilization of TGF-β1 by the addition of polyacrylic acid within acid-treated beads.J. Control. Release199430324125110.1016/0168‑3659(94)90030‑2
    [Google Scholar]
  83. PeppasN. BuresP. LeobandungW. IchikawaH. Hydrogels in pharmaceutical formulations.Eur. J. Pharm. Biopharm.2000501274610.1016/S0939‑6411(00)00090‑4 10840191
    [Google Scholar]
  84. PeppasN.A. SahlinJ.J. Hydrogels as mucoadhesive and bioadhesive materials: a review.Biomaterials199617161553156110.1016/0142‑9612(95)00307‑X 8842358
    [Google Scholar]
  85. LimerA.J. RullayA.K. MiguelV.S. Fluorescently tagged star polymers by living radical polymerisation for mucoadhesion and bioadhesion.React. Funct. Polym.2006661516410.1016/j.reactfunctpolym.2005.07.024
    [Google Scholar]
  86. ZiaK.M. TabasumS. NasifM. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites.Int. J. Biol. Macromol.20179628230110.1016/j.ijbiomac.2016.11.095 27914965
    [Google Scholar]
  87. JiaoG. YuG. ZhangJ. EwartH. Chemical structures and bioactivities of sulfated polysaccharides from marine algae.Mar. Drugs20119219622310.3390/md9020196 21566795
    [Google Scholar]
  88. TherkelsenG.H. Carrageenan.In: Industrial Gums.Amsterdam, The NetherlandsElsevier199314518010.1016/B978‑0‑08‑092654‑4.50011‑5
    [Google Scholar]
  89. KariduraganavarM.Y. KitturA.A. KambleR.R. Polymer synthesis and processing.In: Natural and Synthetic Biomedical Polymers.Amsterdam, The NetherlandsElsevier201413110.1016/B978‑0‑12‑396983‑5.00001‑6
    [Google Scholar]
  90. LiL. NiR. ShaoY. MaoS. Carrageenan and its applications in drug delivery.Carbohydr. Polym.201410311110.1016/j.carbpol.2013.12.008 24528694
    [Google Scholar]
  91. BeMiller. J.N. Carrageenans.Carbohydrate Chemistry for Food Scientists.Amsterdam, The NetherlandsElsevier2019279291
    [Google Scholar]
  92. NguyenB.T. NicolaiT. BenyahiaL. ChassenieuxC. Synergistic effects of mixed salt on the gelation of κ-carrageenan.Carbohydr. Polym.2014112101510.1016/j.carbpol.2014.05.048 25129710
    [Google Scholar]
  93. BerteauO. MulloyB. Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide.Glycobiology200313629R4010.1093/glycob/cwg058 12626402
    [Google Scholar]
  94. LiB. LuF. WeiX. ZhaoR. Fucoidan: Structure and Bioactivity.Molecules20081381671169510.3390/molecules13081671 18794778
    [Google Scholar]
  95. Kalsoom KhanA. SabaA.U. NawazishS. Carrageenan based bionanocomposites as drug delivery tool with special emphasis on the influence of ferromagnetic nanoparticles.Oxid. Med. Cell. Longev.2017201711310.1155/2017/8158315 28303171
    [Google Scholar]
  96. McKimJ.M. WilloughbyJ.A.Sr BlakemoreW.R. WeinerM.L. Clarifying the confusion between poligeenan, degraded carrageenan, and carrageenan: A review of the chemistry, nomenclature, and in vivo toxicology by the oral route.Crit. Rev. Food Sci. Nutr.201959193054307310.1080/10408398.2018.1481822 29902080
    [Google Scholar]
  97. VenkatesanJ. AnilS. KimS.K. Seaweed Polysaccharides: isolation, biological and biomedical applications.Seaweed Polysaccharides and Their Production and Applications2017
    [Google Scholar]
  98. AnastyukS.D. ShevchenkoN.M. NazarenkoE.L. DmitrenokP.S. ZvyagintsevaT.N. Structural analysis of a fucoidan from the brown alga Fucus evanescens by MALDI-TOF and tandem ESI mass spectrometry.Carbohydr. Res.2009344677978710.1016/j.carres.2009.01.023 19230864
    [Google Scholar]
  99. HuangY.C. LamU.I. Chitosan/fucoidan pH sensitive nanoparticles for oral delivery system.J. Chin. Chem. Soc. (Taipei)201158677978510.1002/jccs.201190121
    [Google Scholar]
  100. BalboaE.M. CondeE. MoureA. FalquéE. Domínguez, H. In vitro antioxidant properties of crude extracts and compounds from brown algae.Food Chem.20131382-31764178510.1016/j.foodchem.2012.11.026 23411309
    [Google Scholar]
  101. NishinoT. YokoyamaG. DobashiK. FujiharaM. NagumoT. Isolation, purification, and characterization of fucose-containing sulfated polysaccharides from the brown seaweed ecklonia kurome and their blood-anticoagulant activities.Carbohydr. Res.1989186111912910.1016/0008‑6215(89)84010‑8 2720702
    [Google Scholar]
  102. KuznetsovaT.A. BesednovaN.N. MamaevA.N. MomotA.P. ShevchenkoN.M. ZvyagintsevaT.N. Anticoagulant activity of fucoidan from brown algae Fucus evanescens of the Okhotsk Sea.Bull. Exp. Biol. Med.2003136547147310.1023/B:BEBM.0000017096.72246.1f 14968163
    [Google Scholar]
  103. YanM.D. YaoC.J. ChowJ.M. Fucoidan elevates microRNA-29b to regulate DNMT3B-MTSS1 axis and inhibit EMT in human hepatocellular carcinoma cells.Mar. Drugs201513106099611610.3390/md13106099 26404322
    [Google Scholar]
  104. BajpaiA.K. ShuklaS.K. BhanuS. KankaneS. Responsive polymers in controlled drug delivery.Prog. Polym. Sci.200833111088111810.1016/j.progpolymsci.2008.07.005
    [Google Scholar]
  105. BawaP. PillayV. ChoonaraY.E. du ToitL.C. Stimuli-responsive polymers and their applications in drug delivery.Biomed. Mater.20094202200110.1088/1748‑6041/4/2/022001 19261988
    [Google Scholar]
  106. Rocha de SouzaM.C. MarquesC.T. Guerra DoreC.M. Ferreira da SilvaF.R. Oliveira RochaH.A. LeiteE.L. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds.J. Appl. Phycol.200719215316010.1007/s10811‑006‑9121‑z 19396353
    [Google Scholar]
  107. BlackW.A.P. DewarE.T. WoodwardF.N. Manufacture of algal chemicals. IV-Laboratory-scale isolation of fucoidin from brown marine algae.J. Sci. Food Agric.19523312212910.1002/jsfa.2740030305
    [Google Scholar]
  108. KawamotoH. MikiY. KimuraT. Effects of fucoidan from Mozuku on human stomach cell lines.Food Sci. Technol. Res.200612321822210.3136/fstr.12.218
    [Google Scholar]
  109. YangJ. HanS. ZhengH. DongH. LiuJ. Preparation and application of micro/nanoparticles based on natural polysaccharides.Carbohydr. Polym.2015123536610.1016/j.carbpol.2015.01.029 25843834
    [Google Scholar]
  110. D’AyalaG. MalinconicoM. LaurienzoP. Marine derived polysaccharides for biomedical applications: chemical modification approaches.Molecules20081392069210610.3390/molecules13092069 18830142
    [Google Scholar]
  111. KurosakiT. KitaharaT. KawakamiS. The development of a gene vector electrostatically assembled with a polysaccharide capsule.Biomaterials200930264427443410.1016/j.biomaterials.2009.04.041 19473696
    [Google Scholar]
  112. dos SantosM.A. GrenhaA. Polysaccharide nanoparticles for protein and Peptide delivery: exploring less-known materials.Adv. Protein Chem. Struct. Biol.20159822326110.1016/bs.apcsb.2014.11.003 25819281
    [Google Scholar]
  113. ManivasaganP. BharathirajaS. BuiN.Q. Doxorubicin-loaded fucoidan capped gold nanoparticles for drug delivery and photoacoustic imaging.Int. J. Biol. Macromol.20169157858810.1016/j.ijbiomac.2016.06.007 27267570
    [Google Scholar]
  114. LiraM.C.B. Santos-MagalhãesN.S. NicolasV. Cytotoxicity and cellular uptake of newly synthesized fucoidan-coated nanoparticles.Eur. J. Pharm. Biopharm.201179116217010.1016/j.ejpb.2011.02.013 21349331
    [Google Scholar]
  115. Farkaš V. Fungal cell walls: Their structure, biosynthesis and biotechnological aspects.Acta Biotechnol.199010322523810.1002/abio.370100303
    [Google Scholar]
  116. SunP. LiP. LiY.M. WeiQ. TianL.H. A pH-sensitive chitosan-tripolyphosphate hydrogel beads for controlled glipizide delivery.J. Biomed. Mater. Res. B Appl. Biomater.201197B117518310.1002/jbm.b.31801 21290595
    [Google Scholar]
  117. ZhangY. WeiW. LvP. WangL. MaG. Preparation and evaluation of alginate–chitosan microspheres for oral delivery of insulin.Eur. J. Pharm. Biopharm.2011771111910.1016/j.ejpb.2010.09.016 20933083
    [Google Scholar]
  118. PregoC. García M, Torres D, Alonso MJ. Transmucosal macromolecular drug delivery.J. Control. Release20051011-315116210.1016/j.jconrel.2004.07.030 15588901
    [Google Scholar]
  119. PregoC. FabreM. TorresD. AlonsoM.J. Efficacy and mechanism of action of chitosan nanocapsules for oral peptide delivery.Pharm. Res.200623354955610.1007/s11095‑006‑9570‑8 16525861
    [Google Scholar]
  120. RanaldiG. MariglianoI. VespignaniI. PerozziG. SambuyY. The effect of chitosan and other polycations on tight junction permeability in the human intestinal Caco-2 cell line1 1Abbreviations: AP = apical; BL = basolateral; 2-DOG = 2-deoxyglucose; HBSS = Hanks balanced salt solution; FITC = fluorescein isothiocyanate; HEPES = N-2-hydroxyethyl piperazine-N-4-butanesulfonic acid; HMW = high molecular weight; LMW = low molecular weight; MES = morpholinoethane sulfonic acid; PBS+ = phosphate buffered saline; PEI = polyethylenimine; TEER = transepithelial electrical resistance; TRITC = tetramethylrodamine isothiocyanate.J. Nutr. Biochem.200213315716710.1016/S0955‑2863(01)00208‑X 11893480
    [Google Scholar]
  121. YehT.H. HsuL.W. TsengM.T. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening.Biomaterials201132266164617310.1016/j.biomaterials.2011.03.056 21641031
    [Google Scholar]
  122. SonajeK. LinK.J. TsengM.T. Effects of chitosan-nanoparticle-mediated tight junction opening on the oral absorption of endotoxins.Biomaterials201132338712872110.1016/j.biomaterials.2011.07.086 21862121
    [Google Scholar]
  123. ŞenelS. KremerM.J. KaşS. WertzP.W. HıncalA.A. SquierC.A. Enhancing effect of chitosan on peptide drug delivery across buccal mucosa.Biomaterials200021202067207110.1016/S0142‑9612(00)00134‑4 10966016
    [Google Scholar]
  124. DyerA.M. HinchcliffeM. WattsP. Nasal delivery of insulin using novel chitosan based formulations: a comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles.Pharm. Res.2002197998100810.1023/A:1016418523014 12180553
    [Google Scholar]
  125. DashM. ChielliniF. OttenbriteR.M. ChielliniE. Chitosan—A versatile semi-synthetic polymer in biomedical applications.Prog. Polym. Sci.2011368981101410.1016/j.progpolymsci.2011.02.001
    [Google Scholar]
  126. QiL.F. XuZ.R. LiY. JiangX. HanX.Y. In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells.World J. Gastroenterol.2005113351365141 16127742
    [Google Scholar]
  127. PonchelG. IracheJ. Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract.Adv. Drug Deliv. Rev.1998342-319121910.1016/S0169‑409X(98)00040‑4 10837678
    [Google Scholar]
  128. BernkopschnürchA. Thiomers: A new generation of mucoadhesive polymers.Adv. Drug Deliv. Rev.200557111569158210.1016/j.addr.2005.07.002 16176846
    [Google Scholar]
  129. GreeneW.H. Biochemistry of antimicrobial action.Yale J. Biol. Med.197750187
    [Google Scholar]
  130. SudarshanN.R. HooverD.G. KnorrD. Antibacterial action of chitosan.Food Biotechnol.19926325727210.1080/08905439209549838
    [Google Scholar]
  131. LeubaJ.L. StosselP. Chitosan and other polyamines: Antifungal activity and interaction with biological membranes.In: Chitin in nature and technology.1986215222
    [Google Scholar]
  132. ParkP.J. JeJ.Y. KimS.K. Free radical scavenging activity of chitooligosaccharides by electron spin resonance spectrometry.J. Agric. Food Chem.200351164624462710.1021/jf034039+ 14705887
    [Google Scholar]
  133. DivyaK. JishaM.S. Chitosan nanoparticles preparation and applications.Environ. Chem. Lett.201816110111210.1007/s10311‑017‑0670‑y
    [Google Scholar]
  134. AhmedS. IkramS. Chitosan based scaffolds and their applications in wound healing.Achiev Life Sci20161012737
    [Google Scholar]
  135. RajaonarivonyM. VauthierC. CouarrazeG. PuisieuxF. CouvreurP. Development of a new drug carrier made from alginate.J. Pharm. Sci.199382991291710.1002/jps.2600820909 8229689
    [Google Scholar]
  136. SarmentoB. RibeiroA.J. VeigaF. FerreiraD.C. NeufeldR.J. Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation.J. Nanosci. Nanotechnol.2007782833284110.1166/jnn.2007.609 17685304
    [Google Scholar]
  137. AhmadZ. SharmaS. KhullerG.K. Chemotherapeutic evaluation of alginate nanoparticle-encapsulated azole antifungal and antitubercular drugs against murine tuberculosis.Nanomedicine20073323924310.1016/j.nano.2007.05.001 17652032
    [Google Scholar]
  138. Tue AnhN. Van PhuD. Ngoc DuyN. Duy DuB. Quoc HienN. Synthesis of alginate stabilized gold nanoparticles by γ-irradiation with controllable size using different Au3+ concentration and seed particles enlargement.Radiat. Phys. Chem.201079440540810.1016/j.radphyschem.2009.11.013
    [Google Scholar]
  139. YangJ. PanJ. Hydrothermal synthesis of silver nanoparticles by sodium alginate and their applications in surface-enhanced Raman scattering and catalysis.Acta Mater.201260124753475810.1016/j.actamat.2012.05.037
    [Google Scholar]
  140. GrenhaA. GomesM.E. RodriguesM. Development of new chitosan/carrageenan nanoparticles for drug delivery applications.J. Biomed. Mater. Res. A201092412651272 19322874
    [Google Scholar]
  141. RodriguesS. CostaA.M.R. GrenhaA. Chitosan/carrageenan nanoparticles: Effect of cross-linking with tripolyphosphate and charge ratios.Carbohydr. Polym.201289128228910.1016/j.carbpol.2012.03.010 24750635
    [Google Scholar]
  142. HezavehH. MuhamadI.I. The effect of nanoparticles on gastrointestinal release from modified κ-carrageenan nanocomposite hydrogels.Carbohydr. Polym.201289113814510.1016/j.carbpol.2012.02.062 24750615
    [Google Scholar]
  143. SalgueiroA.M. Daniel-da-SilvaA.L. FateixaS. TrindadeT. κ-Carrageenan hydrogel nanocomposites with release behavior mediated by morphological distinct Au nanofillers.Carbohydr. Polym.201391110010910.1016/j.carbpol.2012.08.004 23044110
    [Google Scholar]
  144. WibowoS. VelazquezG. SavantV. TorresJ.A. Surimi wash water treatment for protein recovery: effect of chitosan?alginate complex concentration and treatment time on protein adsorption.Bioresour. Technol.200596666567110.1016/j.biortech.2004.06.024 15588769
    [Google Scholar]
  145. HejaziR. AmijiM. Chitosan-based gastrointestinal delivery systems.J. Control. Release200389215116510.1016/S0168‑3659(03)00126‑3 12711440
    [Google Scholar]
  146. ChangP.R. JianR. YuJ. MaX. Starch-based composites reinforced with novel chitin nanoparticles.Carbohydr. Polym.201080242042510.1016/j.carbpol.2009.11.041
    [Google Scholar]
  147. SongY. OnishiH. NagaiT. Pharmacokinetic characteristics and antitumor activity of the N-succinyl-chitosan-mitomycin C conjugate and the carboxymethyl-chitin-mitomycin C conjugate.Biol. Pharm. Bull.1993161485410.1248/bpb.16.48 8369752
    [Google Scholar]
  148. DevA. MohanJ.C. SreejaV. Novel carboxymethyl chitin nanoparticles for cancer drug delivery applications.Carbohydr. Polym.20107941073107910.1016/j.carbpol.2009.10.038
    [Google Scholar]
  149. SmithaK.T. AnithaA. FuruikeT. TamuraH. NairS.V. JayakumarR. In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery.Colloids Surf. B Biointerfaces201310424525310.1016/j.colsurfb.2012.11.031 23337120
    [Google Scholar]
  150. GnanadhasD.P. Ben ThomasM. ElangoM. RaichurA.M. ChakravorttyD. Chitosan-dextran sulphate nanocapsule drug delivery system as an effective therapeutic against intraphagosomal pathogen Salmonella.J. Antimicrob. Chemother.201368112576258610.1093/jac/dkt252 23798672
    [Google Scholar]
  151. SmithaK.T. NishaN. MayaS. BiswasR. JayakumarR. Delivery of rifampicin-chitin nanoparticles into the intracellular compartment of polymorphonuclear leukocytes.Int. J. Biol. Macromol.201574364310.1016/j.ijbiomac.2014.11.006 25475841
    [Google Scholar]
  152. AgnihotriS.A. MallikarjunaN.N. AminabhaviT.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery.J. Control. Release2004100152810.1016/j.jconrel.2004.08.010 15491807
    [Google Scholar]
  153. PaquesJ.P. van der LindenE. van RijnC.J.M. SagisL.M.C. Preparation methods of alginate nanoparticles.Adv. Colloid Interface Sci.201420916317110.1016/j.cis.2014.03.009 24745976
    [Google Scholar]
  154. BozkirA. SakaO.M. Chitosan nanoparticles for plasmid DNA delivery: effect of chitosan molecular structure on formulation and release characteristics.Drug Deliv.200411210711210.1080/10717540490280705 15200009
    [Google Scholar]
  155. LeeD.W. YunK.S. BanH.S. ChoeW. LeeS.K. LeeK.Y. Preparation and characterization of chitosan/polyguluronate nanoparticles for siRNA delivery.J. Control. Release2009139214615210.1016/j.jconrel.2009.06.018 19567259
    [Google Scholar]
/content/journals/cms/10.2174/0126661454257825231012191447
Loading
/content/journals/cms/10.2174/0126661454257825231012191447
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test