Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Rapid industrialization by humans is a dominant source of waste materials in water bodies and has created serious environmental problems, which has made the survival of life forms on land as well as in water bodies a challenge. Water gets contaminated by human waste, domestic sewage, wastewater discharges and effluents from industrial sites such as factories, refineries, and mines, accidental spills of chemicals, agricultural run-off, toxic metals and radioactive materials. The toxic non-biodegradable chemicals in industrial waste are treated by various methods such as adsorption, coagulation, ozonation, membrane filtration, ion exchange, chemical oxidation and biological treatments. Biopolymers such as cellulose, chitosan, alginate and keratin proteins are the most sustainable, renewable and biocompatible polymers commonly used for wastewater purification. Chromium VI is one of the serious aquatic pollutants released as effluent from various industries and is considered a potentially toxic metal ion for humans and aquatic life. In the past decades, various conventional methods with their own merits and demerits have been explored for Cr decontamination from wastewater bodies. The present study highlights the application of Chitosan biopolymer as an effective and sustainable material for efficiently removing Cr VI metal ions from wastewater bodies.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454248025230919055029
2023-10-25
2025-04-23
Loading full text...

Full text loading...

References

  1. MishraS. BhargavaR.N. ChowdharyP. Heavy metal contamination: An alarming threat to environment and human health.Environmental Biotechnology:For Sustainable future.SingaporeSpringer Nature Singapore Pte Ltd20181
    [Google Scholar]
  2. PandeyG. MadhuriS. Heavy metals causing toxicity in animals and fishes.Res J Animal Veter Fis Sci2014221723
    [Google Scholar]
  3. GoelP.K. Water Pollution CausesEffects and Control.New Age International2006
    [Google Scholar]
  4. JaishankarM. TsetenT. AnbalaganN. MathewB.B. BeeregowdaK.N. Toxicity, mechanism and health effects of some heavy metals.Interdiscip. Toxicol.201472607210.2478/intox‑2014‑0009 26109881
    [Google Scholar]
  5. McNeillL.S. McLeanJ.E. ParksJ.L. EdwardsM.A. Hexavalent chromium review, part 2: Chemistry, occurrence, and treatment.J. Am. Water Works Assoc.20121047E395E40510.5942/jawwa.2012.104.0092
    [Google Scholar]
  6. LunkH.J. Discovery, properties and applications of chromium and its compounds.ChemTexts.201511610.1007/s40828‑015‑0007‑z
    [Google Scholar]
  7. LewickiS. ZdanowskiR. KrzyżowskaM. The role of Chromium III in the organism and its possible use in diabetes and obesity treatment.Ann. Agric. Environ. Med.201421233133510.5604/1232‑1966.1108599 24959784
    [Google Scholar]
  8. McIverD.J. GrizalesA.M. BrownsteinJ.S. GoldfineA.B. Risk of type 2 diabetes is lower in US adults taking chromium-containing supplements.J. Nutr.2015145122675268210.3945/jn.115.214569 26446484
    [Google Scholar]
  9. JunaidM. HashmiM.Z. MalikR.N. PeiD.S. Toxicity and oxidative stress induced by chromium in workers exposed from different occupational settings around the globe: A review.Environ. Sci. Pollut. Res. Int.20162320201512016710.1007/s11356‑016‑7463‑x 27562808
    [Google Scholar]
  10. SeidlerA. JähnichenS. HegewaldJ. Systematic review and quantification of respiratory cancer risk for occupational exposure to hexavalent chromium.Int. Arch. Occup. Environ. Health201386894395510.1007/s00420‑012‑0822‑0 23079792
    [Google Scholar]
  11. ShahidM. ShamshadS. RafiqM. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review.Chemosphere201717851353310.1016/j.chemosphere.2017.03.074 28347915
    [Google Scholar]
  12. DesMariasT.L. CostaM. Mechanisms of chromium-induced toxicity.Curr. Opin. Toxicol.2019141710.1016/j.cotox.2019.05.003 31511838
    [Google Scholar]
  13. AbbasS.H. IsmailI.M. MostafaT.M. SulaymonA.H. Biosorption of heavy metals: A review.J Chem Sci Tech2014374102
    [Google Scholar]
  14. ShadreckM. MugadzaT. Chromium, an essential nutrient and pollutant: A review.Afr J Pure and Applied Chem201379310317
    [Google Scholar]
  15. PradhanD. SuklaL.B. SawyerM. RahmanP.K.S.M. Recent bioreduction of hexavalent chromium in wastewater treatment: A review.J. Ind. Eng. Chem.20175512010.1016/j.jiec.2017.06.040
    [Google Scholar]
  16. LiL.L. FengX.Q. HanR.P. ZangS.Q. YangG. Chromium (VI) removal via anion exchange on a silver triazolate MOF.J. Hazard. Mater.201732162262810.1016/j.jhazmat.2016.09.029 27694026
    [Google Scholar]
  17. LinL. XuX. PapelisC. CathT.Y. Sorption of metals and metalloids from reverse osmosis concentrate on drinking water treatment solids.Separ. Purif. Tech.20141343745
    [Google Scholar]
  18. MaY. LiuW-J. ZhangN. LiY.S. JiangH. ShengG.P. Polyethylenimine modified biochar adsorbent for hexavalent Chromium removal from aqeous solution.Bioresour. Technol.201416940340810.1016/j.biortech.2014.07.014 25069094
    [Google Scholar]
  19. BasnetP. GyawaliD. Nath GhimireK. PaudyalH. An assessment of the lignocellulose-based biosorbents in removing Cr(VI) from contaminated water: A critical review.Results Chem2022410040610.1016/j.rechem.2022.100406
    [Google Scholar]
  20. MohamedH.S. SolimanN.K. AbdelrheemD.A. RamadanA.A. ElghandourA.H. Adsorption of Cd2+ and Cr3+ ions from aqueous solutions by using residue of Padina gymnospora waste as promising low-cost adsorbent.Heliyon201953e01287
    [Google Scholar]
  21. AsanuM. BeyeneD. BefekaduA. Removal of hexavalent chromium from aqueous solutions using natural zeolite coated with magnetic nanoparticles: Optimization, kinetics and equibrium studies.Adsorpt. Sci. Technol.20222022862548910.1155/2022/8625489
    [Google Scholar]
  22. MahviA. BalarakD. BazrafshanE. Remarkable reusability of magnetic Fe3O4-graphene oxide composite: a highly effective adsorbent for Cr(VI) ions.Int. J. Environ. Anal. Chem.202110312110.1080/03067319.2021.1910250
    [Google Scholar]
  23. RezaeiH. Biosorption of chromium by using spirulina sp.Arab. J. Chem.20169684685310.1016/j.arabjc.2013.11.008
    [Google Scholar]
  24. Castañeda-FigueredoJ.S. Torralba-DotorA.I. Pérez-RodríguezC.C. Moreno-BedoyaA.M. Mosquera-VivasC.S. Removal of lead and chromium from solution by organic peels: Effect of particle size and bio-adsorbent.Heliyon202288e1027510.1016/j.heliyon.2022.e10275 36051267
    [Google Scholar]
  25. AyeleA. GodetoY.G. Bioremediation of chromium by microorganisms and its mechanisms related to functional groups.J. Chem.2021202112110.1155/2021/7694157
    [Google Scholar]
  26. KafilzadehF. Isolation and identification of chromium (VI)-resistant bacteria from Soltan Abad river sediments (Shiraz-Iran).Jundishapur J Health Sci201681e33576
    [Google Scholar]
  27. MalaviyaP. SinghA. Bioremediation of chromium solutions and chromium containing wastewaters.Crit. Rev. Microbiol.201642460763310.3109/1040841X.2014.974501 25358056
    [Google Scholar]
  28. ChhikaraS. HoodaA. RanaL. DhankharR. Chromium (VI) biosorption by immobilized Aspergillus niger in continuous flow system with special reference to FTIR analysis.J. Environ. Biol.2010315561566 21387903
    [Google Scholar]
  29. PakadeV.E. TavengwaN.T. MadikizelaL.M. Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods.RSC Advances2019945261422616410.1039/C9RA05188K 35531021
    [Google Scholar]
  30. SarodeS. UpadhyayP. KhosaM.A. Overview of wastewater treatment methods with special focus on biopolymer chitin-chitosan.Int. J. Biol. Macromol.20191211086110010.1016/j.ijbiomac.2018.10.089 30342936
    [Google Scholar]
  31. ZhangR. TianY. Characteristics of natural biopolymers and their derivative as sorbents for chromium adsorption: A review.J Lea Sc Eng2020212410.1186/s42825‑020‑00038‑9
    [Google Scholar]
  32. ZiaQ. A review on chitosan for removal of heavy metal ions.J Fiber Bioeng Inform2019123103128
    [Google Scholar]
  33. GunawardanaD. GunawardenaS. Evaluating the effectiveness of chitosan for removal of hexavalent chromium from wastewater best.Int J Manag Inform TechEng201869110
    [Google Scholar]
  34. Gopal ReddiMR GomathiT SaranyaM SudhaPN Adsorption and kinetic studies on the removal of chromium and copper onto Chitosan-g-maliec anhydride-g-ethylene dimethacrylate. Int J Biol Macromol2017104Pt B1578158510.1016/j.ijbiomac.2017.01.142 28174087
    [Google Scholar]
  35. BhattR SreedharB PadmajaP Chitosan supramolecularly cross linked with trimesic acid – Facile synthesis, characterization and evaluation of adsorption potential for chromium(VI).Int J Biol Macromol2017104Pt A12546610.1016/j.ijbiomac.2017.06.06728655661
    [Google Scholar]
  36. HenaS. Removal of chromium hexavalent ion from aqueous solutions using biopolymer chitosan coated with poly 3-methyl thiophene polymer.J. Hazard. Mater.20101811-347447910.1016/j.jhazmat.2010.05.037 20627405
    [Google Scholar]
  37. RamasubramaniamS. GovindarajanC. GomathiT. SudhaP.N. Removal of Chromium (VI) from aqueous solution using chitosan: Starch blend.Scholars Research Library Der Pharm Lett201241240248
    [Google Scholar]
  38. YangR. LiH. HuangM. YangH. LiA. A review on chitosan-based flocculants and their applications in water treatment.Water Res.201695598910.1016/j.watres.2016.02.068 26986497
    [Google Scholar]
  39. LiK. LiP. CaiJ. XiaoS. YangH. LiA. Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent.Chemosphere201615431031810.1016/j.chemosphere.2016.03.100 27060639
    [Google Scholar]
  40. TaoX. LiK. YanH. YangH. LiA. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres.Environ. Pollut.2016209212910.1016/j.envpol.2015.11.020 26618263
    [Google Scholar]
  41. RimuS.H. RahmanM.M. Insight of chitosan-based nanocomposite for removal of hexavalent chromium from wastewater: A review.Int. J. Environ. Anal. Chem.2022102186801681810.1080/03067319.2020.1817426
    [Google Scholar]
  42. HuangR. YangB. LiuQ. Removal of chromium(VI) Ions from aqueous solutions with protonated crosslinked chitosan.J. Appl. Polym. Sci.2013129290891510.1002/app.38685
    [Google Scholar]
  43. SessaregoS. RodriguesS.C.G. XiaoY. LuQ. HillJ.M. Phosphonium-enhanced chitosan for Cr(VI) adsorption in wastewater treatment.Carbohydr. Polym.201921124925610.1016/j.carbpol.2019.02.003 30824086
    [Google Scholar]
  44. RimuS.H. RahmanM.M. Insight of chitosan-based nanocomposite for removal of hexavalent chromium from wastewater: A review.Int. J. Environ. Anal. Chem.2022102186801681810.1080/03067319.2020.1817426
    [Google Scholar]
  45. DimaJ.B. SequeirosC. ZaritzkyN.E. Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes.Chemosphere201514110011110.1016/j.chemosphere.2015.06.030 26151484
    [Google Scholar]
  46. GokilaS GomathiT SudhaPN AnilS Removal of the heavy metal ion chromiuim(VI) using Chitosan and Alginate nanocomposites.Int J Biol Macromol2017104Pt B) 14596810.1016/j.ijbiomac.2017.05.11728551438
    [Google Scholar]
  47. MurtazaG. AhmedZ. DaiD.Q. A review of mechanism and adsorption capacities of biochar-based engineered composites for removing aquatic pollutants from contaminated water.Front. Environ. Sci.202210103586510.3389/fenvs.2022.1035865
    [Google Scholar]
  48. SunP. WangZ. AnS. Biochar-supported nZVI for the removal of Cr(VI) from soil and water: Advances in experimental research and engineering applications.J. Environ. Manage.202231611521110.1016/j.jenvman.2022.115211 35561491
    [Google Scholar]
  49. ChenY. HeP. ZhangK. Enhanced Cr(VI) reduction using highly conductive material synthesized by modified chitosan coated with natural iron-manganese minerals.Appl. Surf. Sci.2023611155635
    [Google Scholar]
  50. LuoL. ChengS. YueL. YouZ. CaiJ. N-doped biochar from chitosan gel-like solution: Effect of hydrothermal temperature and superior aqueous Cr (VI) removal performance.Colloids Surf. A Physicochem. Eng. Asp.202264112842610.1016/j.colsurfa.2022.128426
    [Google Scholar]
  51. YangY. ZhangY. WangG. Adsorption and reduction of Cr(VI) by a novel nanoscale FeS/chitosan/biochar composite from aqueous solution.J. Environ. Chem. Eng.20219410540710.1016/j.jece.2021.105407
    [Google Scholar]
  52. ZhangH. XiaoR. LiR. AliA. ChenA. ZhangZ. Enhanced aqueous Cr(VI) removal using chitosan-modified magnetic biochars derived from bamboo residues.Chemosphere202026112769410.1016/j.chemosphere.2020.127694 32731018
    [Google Scholar]
  53. QinL. HeL. YangW. LinA. Preparation of a novel iron-based biochar composite for removal of hexavalent chromium in water.Environ. Sci. Pollut. Res. Int.20202799214922610.1007/s11356‑019‑06954‑6 31916154
    [Google Scholar]
  54. ZhouD. XieG. HuX. Coupling of Kenaf biochar and magnetic BiFeO3 onto cross-linked chitosan for enhancing separation performance and Cr(Vi) ions removal efficiency.Int. J. Environ. Res. Public Health202017378810.3390/ijerph17030788 32012702
    [Google Scholar]
  55. ChenX.L. LiF. XieX.J. LiZ. ChenL. Nanoscale zerovalent iron and chitosan functionalized eichhornia crassipes biochar for efficient hexavalent chromium removal.Int. J. Environ. Res. Public Health20191617304610.3390/ijerph16173046 31443402
    [Google Scholar]
  56. LiuX. HuQ. FangZ. ZhangX. ZhangB. Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal.Langmuir20092513810.1021/la802754t 19032060
    [Google Scholar]
  57. ShaumbwaV.R. LiuD. ArcherB. LiJ. SuF. Preparation and application of magnetic chitosan in environmental remediation and other fields: A review.J. Appl. Polym. Sci.2021138425124110.1002/app.51241
    [Google Scholar]
  58. ZahraM.H. HamzaM.F. El-HabibiG. Synthesis of a novel adsorbent based on chitosan magnetite nanoparticles for the high sorption of Cr (VI) Ions: A study of photocatalysis and recovery on tannery effluents.Catalysts202212767810.3390/catal12070678
    [Google Scholar]
  59. KordeS. TandekarS. JeyaseelanC. SaravananD. JugadeR. Mesoporous magnetic chitosan-zirconia-iron oxide nanocomposite for adsorptive removal of Cr(VI) ions.Mater. Lett.202231113151310.1016/j.matlet.2021.131513
    [Google Scholar]
  60. ParkJ. ShinJ.H. OhW. Removal of hexavalent chromium(vi) from wastewater using chitosan-coated iron oxide nanocomposite membranes.Toxics20221029810.3390/toxics10020098 35202284
    [Google Scholar]
  61. NkunaC.N. SadikuE.R. PerryG. OboirienB. DludluM.K. ThompsonC. Treatment of acid mine drainage and chromium (VI) removal using synthesised chitosan composites blended with kenaf fibre and γ-Fe2O3 nanoparticles.Int. J. Environ. Sci. Technol.20222035993612
    [Google Scholar]
  62. LiuS. GaoJ. ZhangL. YangY. LiuX. Diethylenetriaminepentaacetic acid–thiourea-modified magnetic chitosan for adsorption of hexavalent chromium from aqueous solutions.Carbohydr. Polym.202127411855510.1016/j.carbpol.2021.118555 34702488
    [Google Scholar]
  63. LuJ. LiB. LiW. Nano iron oxides impregnated chitosan beads towards aqueous Cr(VI) elimination: Components optimization and performance evaluation.Colloids Surf. A Physicochem. Eng. Asp.202162512690210.1016/j.colsurfa.2021.126902
    [Google Scholar]
  64. OmerA.M. Abd El-MonaemE.M. Abd El-LatifM.M. El-SubruitiG.M. EltaweilA.S. Facile fabrication of novel magnetic ZIF-67 MOF@aminated chitosan composite beads for the adsorptive removal of Cr(VI) from aqueous solutions.Carbohydr. Polym.202126511808410.1016/j.carbpol.2021.118084 33966848
    [Google Scholar]
  65. ShanH. ZengC. ZhaoC. ZhanH. Iron oxides decorated graphene oxide/chitosan composite beads for enhanced Cr(VI) removal from aqueous solution.Int. J. Biol. Macromol.202117219720910.1016/j.ijbiomac.2021.01.060 33453250
    [Google Scholar]
  66. ZuoB. DengQ. ShaoH. Fe3O4 @Mesoporous-SiO2 @chitosan@polyaniline core-shell nanoparticles as recyclable adsorbents and reductants for hexavalent chromium.ACS Appl. Nano Mater.2021421831184010.1021/acsanm.0c03235
    [Google Scholar]
  67. KhalilT.E. ElhusseinyA.F. IbrahimN.M. El-dissoukyA. Unexpected effect of magnetic nanoparticles on the performance of aqueous removal of toxic Cr(VI) using modified biopolymer chitosan.Int. J. Biol. Macromol.202117076877910.1016/j.ijbiomac.2020.12.188 33385450
    [Google Scholar]
  68. AlsaiariN.S. AmariA. KatubiK.M. AlzahraniF.M. RebahF.B. TahoonM.A. Innovative magnetite based polymeric nanocomposite for simultaneous removal of methyl orange and hexavalent chromium from water.Processes 20219457610.3390/pr9040576
    [Google Scholar]
  69. FanH. RenH. MaX. High-gravity continuous preparation of chitosan-stabilized nanoscale zerovalent iron towards Cr(VI) removal.Chem. Eng. J.202039012463910.1016/j.cej.2020.124639
    [Google Scholar]
  70. WangX. LiuX. XiaoC. Triethylenetetramine-modified hollow Fe2O3/SiO2/chitosan magnetic nanocomposites for removal of Cr(VI) ions with high adsorption capacity and rapid rate.Microporous Mesoporous Mater.202029711004110.1016/j.micromeso.2020.110041
    [Google Scholar]
  71. ZhengC. ZhengH. SunY. Simultaneous adsorption and reduction of hexavalent chromium on the poly(4-vinyl pyridine) decorated magnetic chitosan biopolymer in aqueous solution.Bioresour. Technol.201929312203810.1016/j.biortech.2019.122038 31454736
    [Google Scholar]
  72. PourmortazaviS.M. SahebiH. ZandavarH. MirsadeghiS. Fabrication of Fe2O3 nanoparticles coated by extracted shrimp peels chitosan as sustainable adsorbents for removal of chromium contaminates from wastewater: The design of experiment.Compos., Part B Eng.201917510713010.1016/j.compositesb.2019.107130
    [Google Scholar]
  73. MateiE. PredescuA.M. RâpăM. Removal of chromium(vi) from aqueous solution using a novel green magnetic nanoparticle: Chitosan adsorbent.Anal. Lett.201952152416243810.1080/00032719.2019.1601734
    [Google Scholar]
  74. SubediN. LähdeA. Abu-DansoE. IqbalJ. BhatnagarA. A comparative study of magnetic chitosan (Chi@Fe3O4) and graphene oxide modified magnetic chitosan (Chi@Fe3O4 GO) nanocomposites for efficient removal of Cr(VI) from water.Int. J. Biol. Macromol.201913794895910.1016/j.ijbiomac.2019.06.151 31238072
    [Google Scholar]
  75. ChenX.L. LiF. XieX.J. LiZ. ChenL. Nanoscale zerovalent iron and chitosan functionalized eichhornia crassipes biochar for efficient hexavalent chromium removal.Int. J. Environ. Res. Public Health20191617304610.3390/ijerph16173046 31443402
    [Google Scholar]
  76. ChenX.L. LiF. XieX.J. LiZ. ChenL. Nanoscale zerovalent iron and chitosan functionalized eichhornia crassipes biochar for efficient hexavalent chromium removal.Int. J. Environ. Res. Public Health20191617304610.3390/ijerph16173046 31443402
    [Google Scholar]
  77. ZhangH. PengL. ChenA. Chitosan-stabilized FeS magnetic composites for chromium removal: Characterization, performance, mechanism, and stability.Carbohydr. Polym.201921427628510.1016/j.carbpol.2019.03.056 30925998
    [Google Scholar]
  78. ChagasP.M.B. CaetanoA.A. RossiM.A. Chitosan-iron oxide hybrid composite: mechanism of hexavalent chromium removal by central composite design and theoretical calculations.Environ. Sci. Pollut. Res. Int.20192616159731598810.1007/s11356‑019‑04545‑z 30963426
    [Google Scholar]
  79. ArslanG. SarginI. KayaM. Hexavalent chromium removal by magnetic particle-loaded micro-sized chitinous egg shells isolated from ephippia of water flea.Int. J. Biol. Macromol.2019129233010.1016/j.ijbiomac.2019.01.180 30731166
    [Google Scholar]
  80. CaiW. ZhuF. LiangH. Preparation of thiourea-modified magnetic chitosan composite with efficient removal efficiency for Cr(VI).Chem. Eng. Res. Des.201914415015810.1016/j.cherd.2019.01.031
    [Google Scholar]
  81. FengG. MaJ. ZhangX. Magnetic natural composite Fe3O4-chitosan@bentonite for removal of heavy metals from acid mine drainage.J. Colloid Interface Sci.201953813214110.1016/j.jcis.2018.11.087 30502534
    [Google Scholar]
  82. ZhangB. WuY. FanY. Synthesis of novel magnetic nife2o4 nanocomposite grafted chitosan and the adsorption mechanism of Cr(VI).J. Inorg. Organomet. Polym. Mater.201929129030110.1007/s10904‑018‑0987‑4
    [Google Scholar]
  83. JiangY. CaiW. TuW. ZhuM. Facile cross-link method to synthesize magnetic Fe3O4@SiO2 -Chitosan with high adsorption capacity toward hexavalent chromium.J. Chem. Eng. Data201964122623310.1021/acs.jced.8b00738
    [Google Scholar]
  84. BavassoI. VuppalaS. CianfriniC. Cr(VI) removal by chitosan-magnetite nano-composite in aqueous solution.Chem. Eng. Trans.201973163168
    [Google Scholar]
  85. VuppalaS. MarchettiA. CianfriniC. StollerM. Continuous removal of Cr(VI) by lab-scale fixed-bed column packed with chitosan-nanomagnetite particles.Chem. Eng. Trans.201973193198
    [Google Scholar]
  86. WangT. YongchangS. LuB. Ultrafast removal of Cr(VI) by chitosan coated biochar-supported nano zerovalent iron aerogel from aqueous solution: Application performance and reaction mechanism.Separ. Purif. Tech.20233061122631
    [Google Scholar]
  87. LiuY. ShanH. PangY. ZhanH. ZengC. Iron modified chitosan/coconut shell activated carbon composite beads for Cr(VI) removal from aqueous solution.Int. J. Biol. Macromol.2023224115616910.1016/j.ijbiomac.2022.10.112 36265535
    [Google Scholar]
  88. LiL. LiaoQ. HouB. Synchronous reduction and removal of hexavalent chromium from wastewater by modified magnetic chitosan beads.Separ. Purif. Tech.202330412236310.1016/j.seppur.2022.122363
    [Google Scholar]
  89. ZhangH. PengL. ChenA. Chitosan-stabilized FeS magnetic composites for chromium removal: Characterization, performance, mechanism, and stability.Carbohydr. Polym.201921427628510.1016/j.carbpol.2019.03.056 30925998
    [Google Scholar]
  90. SilvaS.S. ManoJ.F. ReisR.L. Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications.Green Chem.20171951208122010.1039/C6GC02827F
    [Google Scholar]
  91. ShamshinaJ.L. BertonP. Use of ionic liquids in chitin biorefinery: A systematic review.Front. Bioeng. Biotechnol.202081110.3389/fbioe.2020.00011 32117907
    [Google Scholar]
  92. LinX. HeX. LeiL. ZhaoY. CuiL. WuG. Development of ionic liquid filled chitosan capsules to remove Cr(VI) from acidic solution: Adsorption properties and mechanism.J. Environ. Chem. Eng.202210410808110.1016/j.jece.2022.108081
    [Google Scholar]
  93. ShethY. DharaskarS. KhalidM. WalvekarR. Investigating chromium Cr(VI) removal using imidazolium based ionic liquid-chitosan composite adsorptive film.J. Mol. Liq.202234711831710.1016/j.molliq.2021.118317
    [Google Scholar]
  94. EliodórioK.P. PereiraG.J. Morandim-GiannettiA. Functionalized chitosan with butylammonium ionic liquids for removal of Cr(VI) from aqueous solution.J. Appl. Polym. Sci.202113894991210.1002/app.49912
    [Google Scholar]
  95. BiswasS. FatemaJ. DebnathT. Chitosan–clay composites for wastewater treatment: A State-of-the-art review.CS EST Water20211510551085
    [Google Scholar]
  96. DarderM. ColillaM. Ruiz-HitzkyE. Biopolymer−clay nanocomposites based on chitosan intercalated in montmorillonite.Chem. Mater.200315203774378010.1021/cm0343047
    [Google Scholar]
  97. KhanM.N. ChowdhuryM. RahmanM.M. Biobased amphoteric aerogel derived from amine-modified clay-enriched chitosan/alginate for adsorption of organic dyes and chromium (VI) ions from aqueous solution.Materials Today Sustainability202113100077
    [Google Scholar]
  98. LiuD-M. DongC. XuB. Preparation of magnetic kaolin embedded chitosan beads for efficient removal of hexavalent chromium from aqueous solution.Chem. Eng. J.202194105438
    [Google Scholar]
  99. JiaJ. LiuY. SunS. Preparation and characterization of chitosan/bentonite composites for Cr (VI) removal from aqueous solutions.Adsorpt. Sci. Technol.2021202111510.1155/2021/6681486
    [Google Scholar]
  100. ChenM. GuoQ. PeiF. The role of Fe(III) in enhancement of interaction between chitosan and vermiculite for synergistic co-removal of Cr(VI) and Cd(II).Colloids Surf. A Physicochem. Eng. Asp.202060612535610.1016/j.colsurfa.2020.125356
    [Google Scholar]
  101. AltunT. Preparation and application of glutaraldehyde cross-linked chitosan coated bentonite clay capsules: Chromium(VI) removal from aqueous solution.J. Chil. Chem. Soc.20206524790479710.4067/S0717‑97072020000204790
    [Google Scholar]
  102. ForoutanR. PeighambardoustS.J. MohammadiR. OmidvarM. SorialG.A. RamavandiB. Influence of chitosan and magnetic iron nanoparticles on chromium adsorption behavior of natural clay: Adaptive neuro-fuzzy inference modeling.Int. J. Biol. Macromol.202015135536510.1016/j.ijbiomac.2020.02.202 32087228
    [Google Scholar]
  103. YangJ. HuangB. LinM. Adsorption of hexavalent chromium from aqueous solution by a chitosan/bentonite composite: Isotherm, kinetics, and thermodynamics studies.J. Chem. Eng. Data20206552751276310.1021/acs.jced.0c00085
    [Google Scholar]
  104. AbukhadraM.R. AdliiA. BakryB.M. Green fabrication of bentonite/chitosan@cobalt oxide composite (BE/CH@Co) of enhanced adsorption and advanced oxidation removal of Congo red dye and Cr (VI) from water.Int. J. Biol. Macromol.201912640241310.1016/j.ijbiomac.2018.12.225 30593802
    [Google Scholar]
  105. LaysandraL. OndangI.J. JuY.H. Highly adsorptive chitosan/saponin-bentonite composite film for removal of methyl orange and Cr(VI).Environ. Sci. Pollut. Res. Int.20192655020503710.1007/s11356‑018‑4035‑2 30600491
    [Google Scholar]
  106. KhanM.N. ChowdhuryM. RahmanM.M. Biobased amphoteric aerogel derived from amine-modified clay-enriched chitosan/alginate for adsorption of organic dyes and chromium (VI) ions from aqueous solution.Materials Today Sustainability20211310007710.1016/j.mtsust.2021.100077
    [Google Scholar]
  107. LiuD.M. DongC. XuB. Preparation of magnetic kaolin embedded chitosan beads for efficient removal of hexavalent chromium from aqueous solution.J. Environ. Chem. Eng.20219410543810.1016/j.jece.2021.105438
    [Google Scholar]
  108. RajakJ.K. KhandelwalN. BeheraM.P. Removal of chromate ions from leachate-contaminated groundwater samples of Khan Chandpur, India, using chitin modified iron-enriched hydroxyapatite nanocomposite.Environ. Sci. Pollut. Res. Int.20212831417604177110.1007/s11356‑021‑13549‑7 33788088
    [Google Scholar]
  109. JiangC. WangR. ChenX. ZhengL. ChengH. Preparation of chitosan modified fly ash under acid condition and its adsorption mechanism for Cr(VI) in water.J. Cent. South Univ.20212861652166410.1007/s11771‑021‑4724‑8
    [Google Scholar]
  110. JiaJ. LiuY. SunS. Preparation and characterization of chitosan/bentonite composites for Cr (VI) removal from aqueous solutions.Adsorpt. Sci. Technol.20216681486
    [Google Scholar]
  111. ChenM. GuoQ. PeiF. The role of Fe(III) in enhancement of interaction between chitosan and vermiculite for synergistic co-removal of Cr(VI) and Cd(II).Colloids Surf. A Physicochem. Eng. Asp.202060612535610.1016/j.colsurfa.2020.125356
    [Google Scholar]
  112. OshagbemiA.A. AutaM. KovoA.S. Synthesized chitosan-zeolite composite matrix for the adsorption of chromium (VI) ions.Desalination Water Treat.202019537738810.5004/dwt.2020.25885
    [Google Scholar]
  113. AltunT. Preparation and application of glutaraldehyde cross-linked chitosan coated bentonite clay capsules: Chromium(VI) removal from aqueous solution.J. Chil. Chem. Soc.20206524790479710.4067/S0717‑97072020000204790
    [Google Scholar]
  114. ForoutanR. PeighambardoustS.J. MohammadiR. OmidvarM. SorialG.A. RamavandiB. Influence of chitosan and magnetic iron nanoparticles on chromium adsorption behavior of natural clay: Adaptive neuro-fuzzy inference modeling.Int. J. Biol. Macromol.202015135536510.1016/j.ijbiomac.2020.02.202 32087228
    [Google Scholar]
  115. KyzasG.Z. DeliyanniE.A. MatisK.A. Graphene oxide and its application as an adsorbent for wastewater treatment.J. Chem. Technol. Biotechnol.201489219620510.1002/jctb.4220
    [Google Scholar]
  116. RameshaG.K. Vijaya KumaraA. MuralidharaH.B. SampathS. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes.J. Colloid Interface Sci.2011361127027710.1016/j.jcis.2011.05.050 21679961
    [Google Scholar]
  117. AnushS.M. ChandanH.R. GayathriB.H. Graphene oxide functionalized chitosan-magnetite nanocomposite for removal of Cu(II) and Cr(VI) from waste water.Int. J. Biol. Macromol.20201644391440210.1016/j.ijbiomac.2020.09.059 32931831
    [Google Scholar]
  118. LiL. WeiZ. LiuX. Biomaterials cross-linked graphene oxide composite aerogel with a macro–nanoporous network structure for efficient Cr (VI) removal.Int. J. Biol. Macromol.20201561337134610.1016/j.ijbiomac.2019.11.174 31760030
    [Google Scholar]
  119. ParlayıcıŞ. AvcıA. PehlivanE. Fabrication of novel chitosan-humic acid-graphene oxide composite to improve adsorption properties for Cr(VI).Arab. J. Geosci.2019121961510.1007/s12517‑019‑4828‑8
    [Google Scholar]
  120. BandaraP.C. NadresE.T. RodriguesD.F. Use of response surface methodology to develop and optimize the composition of a chitosan–polyethyleneimine–graphene oxide nanocomposite membrane coating to more effectively remove Cr(VI) and Cu(II) from water.ACS Appl. Mater. Interfaces20191119177841779510.1021/acsami.9b03601 31002237
    [Google Scholar]
  121. AnushS.M. ChandanH.R. VishalakshiB. Synthesis and metal ion adsorption characteristics of graphene oxide incorporated chitosan Schiff base.Int. J. Biol. Macromol.201912690891610.1016/j.ijbiomac.2018.12.164 30578905
    [Google Scholar]
  122. TranH.V. TranT.L. LeT.D. LeT.D. NguyenH.M.T. DangL.T. Graphene oxide enhanced adsorption capacity of chitosan/magnetite nanocomposite for Cr(VI) removal from aqueous solution.Mater. Res. Express20186202501810.1088/2053‑1591/aae55c
    [Google Scholar]
  123. OmerS. SinghA. UpadhyayS. Synthesis of chitosan-g-biomass ash/graphene oxide nanocomposite for the removal of copper and chromium from industrial waste water.Clay Res.20193811928
    [Google Scholar]
  124. SamuelM.S. BhattacharyaJ. RajS. SanthanamN. SinghH. Pradeep SinghN.D. Efficient removal of Chromium(VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite.Int. J. Biol. Macromol.201912128529210.1016/j.ijbiomac.2018.09.170 30267821
    [Google Scholar]
  125. LemmaE. KiflieZ. KassahunS.K. Adsorption of Cr (VI) ion from aqueous solution on acrylamide: Grafted starch (Coccinia abyssinicca) – PVA/PVP/chitosan/graphene oxide blended hydrogel: isotherms, kinetics, and thermodynamics studies.Sep. Sci. Technol.202358224125610.1080/01496395.2022.2106441
    [Google Scholar]
  126. HanC. LiuX. WangT. SunX. BaiL. SunY. The preparation of a lignosulfonate/chitosan–graphene oxide hydrogel biosorbent to effectively remove Cr(VI) from wastewater: Adsorption performance and mechanisms.Water202214223684
    [Google Scholar]
  127. El ShahawyA. MubarakM.F. El ShafieM. AbdullaH.M. Fe(iii) and Cr(vi) ions’ removal using AgNPs/GO/chitosan nanocomposite as an adsorbent for wastewater treatment.RSC Advances20221227170651708410.1039/D2RA01612E 35755594
    [Google Scholar]
  128. ShanH. ZengC. ZhaoC. ZhanH. Iron oxides decorated graphene oxide/chitosan composite beads for enhanced Cr(VI) removal from aqueous solution.Int. J. Biol. Macromol.202117219720910.1016/j.ijbiomac.2021.01.060 33453250
    [Google Scholar]
  129. RamasubramaniamS. GovindarajanC. GomathiT. SudhaP.N. Removal of Chromium (VI) from aqueous solution using chitosan: Starch blend.Scholars Research Library Der Pharmacia Lettre201241240248
    [Google Scholar]
  130. HassanA.F. El-NaggarG.A. BraishA.G. AmiraM.F. AlshandoudiL.M. Enhanced adsorption of chromium (VI) from aqueous medium by basic nanohydroxyapatite/chitosan composite based on egg shell.Desalination Water Treat.202020623524910.5004/dwt.2020.26306
    [Google Scholar]
  131. GunawardanaD. GunawardenaS. Evaluating the effectiveness of chitosan for removal of hexavalent chromium from wastewater.BEST: Int J Manag Inform Tech Eng201869110
    [Google Scholar]
  132. HossainK.F.B. SikderM.T. RahmanM.M. UddinM.K. KurasakiM. Investigation of chromium removal efficacy from tannery effluent by synthesized chitosan from crab shell.Arab. J. Sci. Eng.20174241569157710.1007/s13369‑017‑2435‑0
    [Google Scholar]
  133. TanL.N. NguyenN.C.T. TrinhA.M.H. DoN.H.N. LeK.A. LeP.K. Eco-friendly synthesis of durable aerogel composites from chitosan and pineapple leaf-based cellulose for Cr(VI) removal.Separ. Purif. Tech.202330412241510.1016/j.seppur.2022.122415
    [Google Scholar]
  134. LemmaE. KiflieZ. KassahunS.K. Adsorption of Cr (VI) ion from aqueous solution on acrylamide – grafted starch (Coccinia abyssinicca) – PVA/PVP/chitosan/graphene oxide blended hydrogel: Isotherms, kinetics, and thermodynamics studies.Sep. Sci. Technol.202358224125610.1080/01496395.2022.2106441
    [Google Scholar]
  135. XuC. XuY. ZhongD. Efficient adsorption and reduction of Cr(VI) by Zr4+ cross-linked magnetic chitosan/polyaniline composite.J. Environ. Chem. Eng.202210610897710.1016/j.jece.2022.108977
    [Google Scholar]
  136. LiuX ZhangY LiuY ZhangT. Removal of Cr(VI) and Ag(I) by grafted magnetic zeolite/chitosan for water purification: Synthesis and adsorption mechanism. Int J Biol Macromol 2022222Pt B2615262710.1016/j.ijbiomac.2022.10.04436228821
    [Google Scholar]
  137. EltaweilAS HashemOA Abdel-HamidH Abd El-MonaemEM AyoupMS Synthesis of a new magnetic Sulfacetamide-ethylacetoacetate hydrazone-chitosan Schiff -base for Cr(VI) removal. Int J Biol Macromol2022222Pt A14657510.1016/j.ijbiomac.2022.09.08136113599
    [Google Scholar]
  138. NechitaP. Application of chitosan in waste water treatment, biological activities and application of marine polysaccharides.Intech opentech201710.5772/65289
    [Google Scholar]
/content/journals/cms/10.2174/0126661454248025230919055029
Loading
/content/journals/cms/10.2174/0126661454248025230919055029
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): adsorption; chitosan; chromium; heavy metals; sustainable materials; Waste water tratment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test