- Home
- A-Z Publications
- Current Molecular Medicine
- Issue Home
Current Molecular Medicine - Current Issue
Volume 24, Issue 12, 2024
-
-
Functional Insight into hTRIR
More LessThe uncharacterized C19orf43 was discovered to be associated with hTR maturation. Our previous work indicated that C19orf43 cleaves distinct RNA types but not DNA. We then named it hTR-interacting RNase (hTRIR) (Uniprot: Q9BQ61). hTRIR works in a broad range of temperatures and pH without any divalent cations needed. hTRIR cleaves RNA at all four nucleotide sites but preferentially at purines. In addition, hTRIR digested both ends of methylated small RNA, which suggested that it was a putative ribonuclease. Later, we designed more nucleotides that methylated small RNA to determine whether it was an exo- and/or endoribonuclease. Unlike RNase A, hTRIR could digest both ends of methylated RNA oligos 5R5, which suggested it was potentially an endoribonuclease.
-
-
-
Polypyrimidine Tract Binding Protein: A Universal Player in Cancer Development
Authors: Elizabeth Gonzalez, Terrie G. Flatt, Midhat Farooqi, Lisa Johnson and Atif A. AhmedObjectivesPolypyrimidine tract binding protein is a 57-Kda protein located in the perinucleolar compartment where it binds RNA and regulates several biological functions through the regulation of RNA splicing. Numerous research articles have been published that address the cellular network and functions of PTB and its isoforms in various disease states.
MethodologyThrough an extensive PubMed search, we attempt to summarize the relevant research into this biomolecule.
ResultsBesides its roles in embryonic development, neuronal cell growth, RNA metabolism, apoptosis, and hematopoiesis, PTB can affect cancer growth via several metabolic, proliferative, and structural mechanisms. PTB overexpression has been documented in several cancers where it plays a role as a novel prognostic factor.
ConclusionThe diverse carcinogenic effect opens an argument into its potential role in inhibitory targeted therapy.
-
-
-
Tumor Mutational Burden as a Biomarker of Immunotherapy Response: An Immunogram Approach in Onco-immunology
Authors: Afzal Ansari, Suman Kumar Ray, Mukul Sharma, Rakesh Rawal and Pushpendra SinghImmune checkpoint inhibitors have revolutionized cancer treatment by allowing T cells to reactivate. Tumor mutational burden (TMB) is a biomarker that has emerged as a viable diagnostic for locating patients who would benefit from immunotherapy in particular cancer types. Greater neo-antigens mean more opportunities for T cell identification, and TMB is clinically linked to better immune checkpoint inhibitors. Tumor foreignness is a cancer immunogram, and TMB can be used as a substitute for foreignness. The role of TMB analysis as an independent predictor of immunotherapy response in the context of immune checkpoint inhibitor medications is the subject of this mini-review.
-
-
-
Emerging Role of Ferroptosis in Breast Cancer: Characteristics, Therapy, and Translational Implications for the Present and Future
Authors: Suman Kumar Ray and Sukhes MukherjeeFerroptosis is a nonapoptotic, iron-dependent form of cell death that can be actuated in disease cells by expected improvements and manufactured specialists. Different studies have recently resurrected the role of this newly discovered cell death pathway and demonstrated its efficacy in treating breast cancer. Breast cancer is the most well-known type of cancer among women worldwide. Despite many years of research focusing on cell death in breast cancer, counting apoptosis, clinical treatment leftovers are difficult due to the high likelihood of recurrence. Ferroptosis is defined by a lack of lipid peroxide repair capacity by phospholipid hydroperoxides GPX4, accessibility of redox-active iron, and followed oxidation of polyunsaturated fatty acids acid-containing phospholipids signalling, amino acid and iron metabolism, ferritinophagy, epithelial-to-mesenchymal transition, cell adhesion, and mevalonate and phospholipid biosynthesis can all be factors that influence ferroptosis susceptibility. Ferroptosis, an iron-dependent controlled cell death caused by excessive lipid peroxidation, has been entwined in breast cancer development and therapeutic response for the past decade. Advances in enhancing clinical drugs targeting ferroptosis are developing silver linings to treat breast cancer. Ferroptosis is influenced by metabolism and the expression of certain genes, making it a prospective therapeutic target for monitoring malignant growth and an appealing target for precision cancer medication disclosure. In the coming years, research into biomarkers to follow ferroptosis in patients with breast cancer and the course of events and the subsequent use of novel ferroptosis-based treatments will be captious. We present a fundamental analysis of the actual understanding of molecular mechanisms along with regulatory networks associated with ferroptosis, expected physiological functions in growth concealment, ferroptosis-associated differentially expressed genes, treatment targeting potential, and recent advances in the development of therapeutic strategies in this review.
-
-
-
The Antidiabetic Mechanisms of Hesperidin: Hesperidin Nanocarriers as Promising Therapeutic Options for Diabetes
Authors: Fatemeh Kaviani, Iraj Baratpour and Sorayya GhasemiA natural flavonoid with exceptional medicinal capabilities, hesperidin, has shown encouraging results in the treatment of diabetes. Thoughts are still being held on the particular processes through which hesperidin exerts its anti-diabetic effects. This work clarifies the complex antidiabetic mechanisms of hesperidin by investigating the molecular pathways involved in glucose homeostasis, insulin signaling, and oxidative stress control. Additionally, the article explores the newly developing field of nanocarrier-based systems as a prospective means of boosting the therapeutic efficiency of hesperidin in the treatment of diabetes. This is because there are difficulties connected with the efficient delivery of hesperidin. These cutting-edge platforms show enormous potential for changing diabetes therapy by utilizing the benefits of nanocarriers, such as enhanced solubility, stability, and targeted delivery. In conclusion, our comprehensive review emphasizes the antidiabetic potential of hesperidin and underscores the intriguing possibilities provided by hesperidin nanocarriers in the search for more effective and individualized diabetes therapies.
-
-
-
Oxidative Stress is a New Avenue for Treatment of Neuropsychiatric Disorders: Hype of Hope?
Authors: Sajad Sahab Negah and Fatemeh ForouzanfarThe biochemical integrity of the brain is critical in maintaining normal central nervous system (CNS) functions. One of the factors that plays an important role in causing biochemical impairment of the brain is known as oxidative stress. Oxidative stress is generally defined as the excessive formation of free radicals relative to antioxidant defenses. The brain is particularly susceptible to oxidative stress because of its high oxygen consumption and lipid-rich content. Therefore, oxidative stress damage is associated with abnormal CNS function. Psychiatric disorders are debilitating diseases. The underlying pathophysiology of psychiatric disorders is poorly defined and may involve the interplay of numerous clinical factors and mechanistic mechanisms. Considerable evidence suggests that oxidative stress plays a complex role in several neuropsychiatric disorders, including anxiety, bipolar disorder, depression, obsessive-compulsive disorder, panic disorder, and schizophrenia. To address these issues, we reviewed the literature and considered the role of oxidative stress as one of the first pathological changes in the course of neuropsychiatric disorders, which should receive more attention in future research.
-
-
-
Pharmacological Activation of AMPK Prevents Drp1-mediated Mitochondrial Fission and Alleviates Hepatic Steatosis In vitro
Authors: Jingxia Du, Tingting Wang, Chengyao Xiao, Yibo Dong, Shiyao Zhou and Yujiao ZhuBackgroundThe incidence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide. Adenosine monophosphate-activated protein kinase (AMPK) activation is beneficial for NAFLD treatment. Recent studies show the excessive fission of mitochondria during NAFLD progression, so targeting mitochondria dynamics may be a possible target for NAFLD. Still, little is known about whether AMPK regulates mitochondrial dynamics in hepar.
ObjectiveThis study investigated whether AMPK activation alleviates hepatic steatosis by regulating mitochondrial dynamics mediated by GTPase dynamin-related protein 1 (Drp1).
MethodsHuman hepatocyte line L-02 cells were cultured and subjected to palmitic acid (PA) treatment for 24 h to establish a hepatic steatosis model in vitro, which was pre-treated with different tool drugs. Hepatocyte function, hepatocyte lipid content, mitochondrial reactive oxygen species (ROS) production, and mitochondrial membrane potential (MMP) were examined. The expression levels of genes and proteins associated with mitochondrial dynamics were assessed using reverse transcription-quantitative PCR and western blotting.
ResultsThe results indicated that 5-Aminoimidazole-4-carboxamide 1-β-D-ribofura-noside (AICAR), an AMPK activator, improved hepatocyte function, as demonstrated by decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity (P<0.05 or P<0.01). In addition, AICAR decreased total cholesterol (TC) and triglyceride (TG) content and lipid deposition in hepatocytes (P<0.01); decreased ROS production; improved MMP (P<0.01); reduced fission-1 (Fis1) and mitochondrial fission factor (Mff) mRNA expression; and downregulated p-Drp1 (Ser 616) protein expression. In contrast, AICAR increased mitochondrial fusion factor mitofusin-1 (Mfn1) and mitofusin-2 (Mfn2) mRNA expression and upregulated p-Drp1 (Ser 637) protein expression. Mdivi-1, a Drp-1 inhibitor, was used to confirm whether mitochondrial dynamics regulated by Drp1-mediated the role of AICAR. Similar to AICAR, Mdivi-1 improved hepatocyte function and MMP significantly, decreased ROS production and lipid deposition, downregulated Fis1 and Mff mRNA expression, downregulated p-Drp1 (Ser 616) protein expression, and enhanced Mfn1 and Mfn2 mRNA and p-Drp1 (Ser 637) protein expression. However, Compound C, an AMPK-specific inhibitor, had less impact on the protective effect of Mdivi-1.
ConclusionThe results demonstrated that AMPK activation has a protective effect on hepatic steatosis in vitro, largely dependent on the inhibition of Drp1-mediated mitochondrial fission.
-
-
-
METTL14 Regulates the m6A Modification of TRAF6 to Suppress Mitochondrial Dysfunction and Ferroptosis in Dopaminergic Neurons via the cGAS-STING Pathway
Authors: Liang Shao, Fan Hu, Renxu Xu, Hongbing Nie, Hong Zhang and Ping ZhangObjectivesThe degeneration of dopaminergic (DA) neurons has emerged as a crucial pathological characteristic in Parkinson’s disease (PD). To enrich the related knowledge, we aimed to explore the impact of the METTL14-TRAF6-cGAS-STING axis in mitochondrial dysfunction and ferroptosis underlying DA neuron degeneration.
Methods1-methyl-4-phenylpyridinium ion (MPP+) was used to treat DA neuron MN9D to develop the PD cell models. Afterward, a cell counting kit, flow cytometer, DCFH-DA fluorescent probe, and Dipyrromethene Boron Difluoride staining were utilized to measure the cell viability, iron concentration, ROS level, and lipid peroxidation, respectively. Meanwhile, the mitochondrial ultrastructure, the activity of mitochondrial respiratory chain complexes, and levels of malondialdehyde and glutathione were monitored. In addition, reverse transcription-quantitative polymerase chain reaction and western blot assays were adopted to measure the expression of related genes. cGAS ubiquitylation and TRAF6 messenger RNA (mRNA) N6-methyladenosine (m6A) levels, the linkages among METTL14, TRAF6, and the cGAS-STING pathway were also evaluated.
ResultsMETTL14 expression was low, and TRAF6 expression was high after MPP+ treatment. In MPP+-treated MN9D cells, METTL14 overexpression reduced ferroptosis, ROS generation, mitochondrial injury, and oxidative stress (OS) and enhanced mitochondrial membrane potentials. TRAF6 overexpression had promoting impacts on mitochondrial dysfunction and ferroptosis in MPP+-treated MN9D cells, which was reversed by further overexpression of METTL14. Mechanistically, METTL14 facilitated the m6A methylation of TRAF6 mRNA to down-regulate TRAF6 expression, thus inactivating the cGAS-STING pathway.
ConclusionMETTL14 down-regulated TRAF6 expression through TRAF6 m6A methylation to inactivate the cGAS-STING pathway, thereby relieving mitochondrial dysfunction and ferroptosis in DA neurons.
-
-
-
Tanshinone Alleviates UVA-induced Melanogenesis in Melanocytes via the Nrf2-regulated Antioxidant Defense Signaling Pathway
Authors: Jiaoquan Chen, Zonghao Yin, Nanji Yu, Shanshan Ou, Xue Wang, Huaping Li and Huilan ZhuBackgroundAs a complex of natural plant compounds, tanshinone is renowned for its remarkable antioxidant properties. However, the potential impact of tanshinone on melanocyte pigmentation regulation has yet to be elucidated. This study aimed to explore the protective effects of tanshinone I (T-I) and dihydrotanshinone (DHT) on melanogenesis by modulating nuclear factor E2-related factor 2 (Nrf2) signaling and antioxidant defenses in human epidermal melanocyte (HEM) cells.
MethodsHEM cells and Nrf2 knockdown HEM cells were subjected to ultraviolet A (UVA) and treated with T-I and/or DHT. Then, the anti-melanogenic properties of T-I and DHT were examined by assessing tyrosinase activity, melanogenesis-related proteins, and melanin content in UVA-irradiated HEM cells. Furthermore, the antioxidant activities of T-I and DHT were evaluated by assessing oxidant formation and modulation of Nrf2-related antioxidant defenses, including reactive oxygen species (ROS), glutathione (GSH) content, and the activity and expression of antioxidant enzymes, such as catalase (CAT), heme oxygenase-1 (HO-1), and superoxide dismutase (SOD).
ResultsOur findings revealed that T-I and DHT diminished melanogenesis in UVA-irradiated HEM cells, activated Nrf2-antioxidant response element signaling, and enhanced antioxidant defenses in the irradiated cells. Furthermore, Nrf2 knockdown by shRNA abolished the anti-melanogenesis effects of T-I and DHT on HEM cells against oxidative damage.
ConclusionThese results suggest that T-I and DHT inhibit UVA-induced melanogenesis in HEM cells, possibly through redox mechanisms involving Nrf2 signaling activation and increased antioxidant defenses. This indicates that T-I and DHT have potential as whitening agents in cosmetics and medical treatments for hyperpigmentation disorders.
-
-
-
The Expression and Molecular Mechanisms of Matrix Metalloproteinase-9 and Vascular Endothelial Growth Factor in Renal Interstitial Fibrosis in Rats
Authors: Shujun Lin, Wenshan Lin, Zhiqing Zhong, Hongzhen Zhong, Tianbiao Zhou and Wenjuan WengObjectiveTo explore a new approach for the treatment of renal interstitial fibrosis (RIF), we detected the expression of matrix metalloproteinase-9 (MMP9) and vascular endothelial growth factor (VEGF).
MethodsTwenty-four male Sprague Dawley (SD) rats were randomly divided into 2-week normal control (2NC) group, 4-week NC (4NC) group, 2-week unilateral ureteral obstruction (2UUO) group, and 4-week UUO (4UUO) group. We performed left ureteral ligation on UUO groups. Then, we sacrificed the rats of the 2NC group and 2UUO group at 2 weeks and the other groups at 4 weeks after the surgery. Immunohistochemistry and western blot were applied to detect the expression of MMP9, VEGF, fibronectin (FN), type IV collagen (Col-IV), and transforming growth factor-β1 (TGF-β1). MMP9 levels reduced after UUO surgery. Its expression was less in the 4UUO group than in the 2UUO group (P<0.05). The expression of VEGF, TGF-β1, FN, and Col-IV was higher in UUO groups than in NC groups (P<0.05). The expression of these indicators was higher in the 4UUO group than in the 2UUO group (P<0.05).
ResultsIn the correlation analysis, MMP9 levels in UUO groups had a negative correlation with the expression of TGF-β1, VEGF, Col-IV, FN, and RIF index (all P<0.05). In UUO groups, VEGF levels had a positive correlation with the expression of TGF-β1, Col-IV, FN, and RIF index (all P<0.05).
ConclusionIn conclusion, with the aggravation of RIF lesions, MMP9 levels decreased, and VEGF levels increased. Whether there is a mutual inhibition relationship between them remains to be confirmed by further experiments.
-
-
-
Preparation of Menthyl 3-amino-4-(2,4,5-trifluorophenyl) Butyrate and Investigation of its Hypoglycemic Activity
Authors: Xinmou Kuang, Minru Su, Hao Li, Xiaolan Sheng, Huan Cai, Shuilin Xie and Zhonghua LiuBackground3-Amino-4-(2,4,5-trifluorophenyl) butyric acid has potential pharmacological effects in promoting insulin secretion. Menthol promotes drug transdermal absorption and hypoglycemic effects.
ObjectiveThe objective of the study was to combine the 3-amino-4-(2,4,5-trifluorophenyl) butyric acid and menthol to develop a new candidate drug molecule that can be used as a hypoglycemic drug in type II diabetes.
MethodsIn this study, the molecular structure of 3-amino-4-(2,4,5-trifluorophenyl) butyric acid in sitagliptin was modified by replacing pyrazine imidazole with menthol. The structure of the target compound was characterized by nuclear magnetic resonance (NMR). The anti-diabetic activity of BHF in N000180 BKS.Cg-Dock7m+/ +Leprdb/Nju mice with spontaneous diabetes was preliminarily studied.
ResultsA potential multi-target drug molecule, 3-amino-4-(2,4,5-trifluorophenyl) butyrate (BHF), was synthesized by combining 3-amino-4-(2,4,5-trifluorophenyl) butyric acid and menthol. BHF is suitable for hyperglycemic mice and has a significant hypoglycemic effect; the low dose of 10 mg/kg-1 started to be effective, and the high dose of 40 mg/kg-1 was more effective than the positive drug metformin.
ConclusionIn this study, BHF has been synthesized and presented significant antidiabetic activities.
-
Volumes & issues
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)