Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Gastrointestinal (GI) cancer is one the most prevalent types of cancer. Despite current chemotherapy's success, patients with GI cancer continue to have a dismal outcome. The onset and progression of cancer are caused by alterations and the abnormal expression of several families of genes, like tumor-suppressor genes, oncogenes, and chemotherapy-resistant genes. The final purpose of tumor therapy is to inhibit cellular development by modifying mutations and editing the irregular expression of genes It has been reported that CDH1, TP53, KRAS, ARID1A, PTEN, and HLA-B are the commonly mutated genes in GI cancer. Gene editing has become one potential approach for cases with advanced or recurrent CRC, who are non-responsive to conventional treatments and a variety of driver mutations along with progression cause GI progression. CRISPR/Cas9 technique is a reliable tool to edit the genome and understand the functions of mutations driving GI cancer development. CRISPR/Cas9 can be applied to genome therapy for GI cancers, particularly with reference to molecular-targeted medicines and suppressors. Moreover, it can be used as a therapeutic approach by knocking in/out multiple genes. The use of CRISPR/ Cas9 gene editing method for GI cancer therapy has therefore resulted in some improvements. There are several research works on the role of CRISPR/Cas9 in cancer treatment that are summarized in the following separate sections. Here, the use of CRISPR/Cas9-based genome editing in GI and the use of CRISPR/Cas9 is discussed in terms of Targeting Chemotherapy Resistance-related Genes like; KRAS, TP53, PTEN, and ARID1A.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240243076231116080113
2025-03-01
2025-07-03
Loading full text...

Full text loading...

References

  1. LiuW. WangS. LinB. ZhangW. JiG. Applications of CRISPR/Cas9 in the research of malignant musculoskeletal tumors.BMC Musculoskelet. Disord.202122114910.1186/s12891‑021‑04020‑2 33546657
    [Google Scholar]
  2. LiX. GuoM. HouB. CRISPR/Cas9 nanoeditor of double knockout large fragments of E6 and E7 oncogenes for reversing drugs resistance in cervical cancer.J. Nanobiotechnol202119123110.1186/s12951‑021‑00970‑w 34353334
    [Google Scholar]
  3. BharathkumarN. SunilA. MeeraP. CRISPR/Cas-Based modifications for therapeutic applications. A review. Mol. Biotechnol.202264435537210.1007/s12033‑021‑00422‑8 34741732
    [Google Scholar]
  4. GuernetA. GrumolatoL. CRISPR/Cas9 editing of the genome for cancer modeling.Methods2017121-12213013710.1016/j.ymeth.2017.03.007 28288827
    [Google Scholar]
  5. Rodríguez-RodríguezD.R. Ramírez-SolísR. Garza-ElizondoM.A. Garza-RodríguezM.L. Barrera-SaldañaH.A. Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases. [Review]Int. J. Mol. Med.201943415591574 30816503
    [Google Scholar]
  6. MarraffiniL.A. CRISPR-Cas immunity against phages: Its effects on the evolution and survival of bacterial pathogens.PLoS Pathog.2013912e100376510.1371/journal.ppat.1003765 24348245
    [Google Scholar]
  7. DeveauH. GarneauJ.E. MoineauS. CRISPR/Cas system and its role in phage-bacteria interactions.Annu. Rev. Microbiol.201064147549310.1146/annurev.micro.112408.134123 20528693
    [Google Scholar]
  8. JinekM. ChylinskiK. FonfaraI. HauerM. DoudnaJ.A. CharpentierE. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity.Science201233781682110.1126/science.1225829
    [Google Scholar]
  9. JacksonS.P. BartekJ. The DNA-damage response in human biology and disease.Nature200946172671071107810.1038/nature08467 19847258
    [Google Scholar]
  10. RanF.A. HsuP.D. WrightJ. AgarwalaV. ScottD.A. ZhangF. Genome engineering using the CRISPR-Cas9 system.Nat. Protoc.20138112281230810.1038/nprot.2013.143 24157548
    [Google Scholar]
  11. EstêvãoD. Rios CostaN. da CostaR.G. MedeirosR. CRISPR-Cas9 therapies in experimental mouse models of cancer.Future Oncol.201814202083209510.2217/fon‑2018‑0028 30027767
    [Google Scholar]
  12. KooT. YoonA.R. ChoH.Y. BaeS. YunC.O. KimJ.S. Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression.Nucleic Acids Res.201745137897790810.1093/nar/gkx490 28575452
    [Google Scholar]
  13. RoperJ. TammelaT. AkkadA. Colonoscopy-based colorectal cancer modeling in mice with CRISPR–Cas9 genome editing and organoid transplantation.Nat. Protoc.201813221723410.1038/nprot.2017.136 29300388
    [Google Scholar]
  14. WuX. KrizA.J. SharpP.A. Target specificity of the CRISPR-Cas9 system.Quant. Biol.201422597010.1007/s40484‑014‑0030‑x 25722925
    [Google Scholar]
  15. MakarovaK.S. GrishinN.V. ShabalinaS.A. WolfY.I. KooninE.V. A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action.Biol. Direct200611710.1186/1745‑6150‑1‑7 16545108
    [Google Scholar]
  16. CeasarS.A. RajanV. PrykhozhijS.V. BermanJ.N. IgnacimuthuS. Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9.Biochim. Biophys. Acta Mol. Cell Res.2016186392333234410.1016/j.bbamcr.2016.06.009 27350235
    [Google Scholar]
  17. PorterD.L. HwangW-T. FreyN.V. LaceyS.F. ShawP.A. LorenA.W. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia.Sci. Transl. Med.2015730313910.1126/scitranslmed.aac5415
    [Google Scholar]
  18. ChenM. MaoA. XuM. WengQ. MaoJ. JiJ. CRISPR-Cas9 for cancer therapy: Opportunities and challenges.Cancer Lett.2019447485510.1016/j.canlet.2019.01.017 30684591
    [Google Scholar]
  19. WangZ. WangF. HidaN. Design of a functional cyclic HSV1-TK reporter and its application to PET imaging of apoptosis.Nat. Protoc.201510580782110.1038/nprot.2015.048 25927390
    [Google Scholar]
  20. WitvlietA. The potential of crispr/cas9 gene editing as a cancer therapy by targeting fusion genes.2021Available from: https://www.ramsresearch.nl/wp-content/uploads/artikel-3-3.pdf
    [Google Scholar]
  21. PorterD.L. LevineB.L. KalosM. BaggA. JuneC.H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia.N. Engl. J. Med.2011365872573310.1056/NEJMoa1103849 21830940
    [Google Scholar]
  22. FryT.J. ShahN.N. OrentasR.J. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy.Nat. Med.2018241202810.1038/nm.4441 29155426
    [Google Scholar]
  23. HuiminZ ChunhongQ ChangmingA XiwangZ ShuxinW WenjieC Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Molecular Cancer (Web) 202120122
    [Google Scholar]
  24. RazeghianE. NasutionM.K.M. RahmanH.S. A deep insight into CRISPR/Cas9 application in CAR-T cell-based tumor immunotherapies.Stem Cell Res. Ther.202112142810.1186/s13287‑021‑02510‑7 34321099
    [Google Scholar]
  25. TangN. ChengC. ZhangX. QiaoM. LiN. MuW. TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors.JCI Insight2020510.1172/jci.insight.133977
    [Google Scholar]
  26. KimM.Y. YuK-R. KenderianS.S. RuellaM. ChenS. ShinT-H. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia.Cell20181731439145310.1016/j.cell.2018.05.013
    [Google Scholar]
  27. GagliaM.M. MungerK. More than just oncogenes: Mechanisms of tumorigenesis by human viruses.Curr. Opin. Virol.201832485910.1016/j.coviro.2018.09.003 30268926
    [Google Scholar]
  28. YangD. ShiY. TangY. Effect of HPV infection on the occurrence and development of laryngeal cancer: A review.J. Cancer201910194455446210.7150/jca.34016 31528209
    [Google Scholar]
  29. MirabelloL. YeagerM. YuK. CliffordG.M. XiaoY. ZhuB. HPV16 E7 genetic conservation is critical to carcinogenesis.Cell20171701164117410.1016/j.cell.2017.08.001
    [Google Scholar]
  30. KennedyE.M. KornepatiA.V.R. GoldsteinM. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease.J. Virol.201488201196511972 25100830
    [Google Scholar]
  31. SaaymanS. AliS.A. MorrisK.V. WeinbergM.S. The therapeutic application of CRISPR/Cas9 technologies for HIV.Expert Opin. Biol. Ther.201515681983010.1517/14712598.2015.1036736 25865334
    [Google Scholar]
  32. StoneD. LongK.R. LoprienoM.A. CRISPR-Cas9 gene editing of hepatitis B virus in chronically infected humanized mice.Mol. Ther. Methods Clin. Dev.20212025827510.1016/j.omtm.2020.11.014 33473359
    [Google Scholar]
  33. AntalC.E. HudsonA.M. KangE. Cancer-associated protein kinase C mutations reveal kinase’s role as tumor suppressor.Cell2015160348950210.1016/j.cell.2015.01.001 25619690
    [Google Scholar]
  34. ChenZ.H. YuY.P. ZuoZ.H. Targeting genomic rearrangements in tumor cells through Cas9-mediated insertion of a suicide gene.Nat. Biotechnol.201735654355010.1038/nbt.3843 28459452
    [Google Scholar]
  35. JoN. SogabeY. YamadaY. Platforms of in vivo genome editing with inducible Cas9 for advanced cancer modeling.Cancer Sci.2019110392693810.1111/cas.13924 30588718
    [Google Scholar]
  36. JefremowA. NeurathM.F. WaldnerM.J. CRISPR/Cas9 in Gastrointestinal Malignancies.Front. Cell Dev. Biol.2021972721710.3389/fcell.2021.727217 34912798
    [Google Scholar]
  37. HuangQ. LiuX. WangH. A nanotherapeutic strategy to overcome chemoresistance to irinotecan/7-ethyl-10-hydroxy-camptothecin in colorectal cancer.Acta Biomater.202213726227510.1016/j.actbio.2021.10.034 34718178
    [Google Scholar]
  38. Gonzalez-SalinasF. Martinez-AmadorC. TrevinoV. Characterizing genes associated with cancer using the CRISPR/Cas9 system: A systematic review of genes and methodological approaches.Gene202283314659510.1016/j.gene.2022.146595 35598687
    [Google Scholar]
  39. MagantiH.B. BaileyA.J.M. KirkhamA.M. ShorrR. PineaultN. AllanD.S. Persistence of CRISPR/Cas9 gene edited hematopoietic stem cells following transplantation: A systematic review and meta-analysis of preclinical studies.Stem Cells Transl. Med.2021107996100710.1002/sctm.20‑0520 33666363
    [Google Scholar]
  40. YinJ. LiZ. YeL. EphB2 represents an independent prognostic marker in patients with gastric cancer and promotes tumour cell aggressiveness.J. Cancer202011102778278710.7150/jca.38098 32226496
    [Google Scholar]
  41. ZhangB. CRISPR/Cas gene therapy.J. Cell. Physiol.202123642459248110.1002/jcp.30064 32959897
    [Google Scholar]
  42. AlmeidaR.S. WisnieskiF. Takao Real KariaB. SmithM.A.C. CRISPR/Cas9 Genome-Editing Technology and Potential Clinical Application in Gastric Cancer.Genes (Basel)20221311202910.3390/genes13112029 36360266
    [Google Scholar]
  43. ZhaoD. WuD. ZhangG. A novel irinotecan derivative ZBH-1207 with different anti-tumor mechanism from CPT-11 against colon cancer cells.Mol. Biol. Rep.20224998359836810.1007/s11033‑022‑07652‑2 35764749
    [Google Scholar]
  44. LindeboomR.G.H. VermeulenM. LehnerB. SupekF. The impact of nonsense-mediated mRNA decay on genetic disease, gene editing and cancer immunotherapy.Nat. Genet.201951111645165110.1038/s41588‑019‑0517‑5 31659324
    [Google Scholar]
  45. VatsA. Trejo-CerroO. ThomasM. BanksL. Human papillomavirus E6 and E7: What remains?Tumour Virus Res20211120021310.1016/j.tvr.2021.200213
    [Google Scholar]
  46. DengB.B. JiaoB.P. LiuY.J. LiY.R. WangG.J. BIX‐01294 enhanced chemotherapy effect in gastric cancer by inducing GSDME‐mediated pyroptosis.Cell Biol. Int.20204491890189910.1002/cbin.11395 32437063
    [Google Scholar]
  47. CuiY. LiQ. LiH. Asparaginyl endopeptidase improves the resistance of microtubule-targeting drugs in gastric cancer through IQGAP1 modulating the EGFR/JNK/ERK signaling pathway.OncoTargets Ther.20171062764310.2147/OTT.S125579 28223821
    [Google Scholar]
  48. ZhenS. LuJ.J. WangL.J. In vitro and in vivo synergistic therapeutic effect of cisplatin with human papillomavirus16 E6/E7 CRISPR/Cas9 on cervical cancer cell line.Transl. Oncol.20169649850410.1016/j.tranon.2016.10.002 27816686
    [Google Scholar]
  49. ArdeltM.A. FröhlichT. MartiniE. Inhibition of cyclin‐dependent kinase 5: A strategy to improve sorafenib response in hepatocellular carcinoma therapy.Hepatology201969137639310.1002/hep.30190 30033593
    [Google Scholar]
  50. JiangC. QianM. GochoY. Genome-wide CRISPR/Cas9 screening identifies determinant of panobinostat sensitivity in acute lymphoblastic leukemia.Blood Adv.2022682496250910.1182/bloodadvances.2021006152 35192680
    [Google Scholar]
  51. MoyesK.W. LiebermanN.A.P. KreuserS.A. Genetically engineered macrophages: A potential platform for cancer immunotherapy.Hum. Gene Ther.201728220021510.1089/hum.2016.060 27758144
    [Google Scholar]
  52. JovčevskaI. KočevarN. KomelR. Glioma and glioblastoma - how much do we (not) know?Mol. Clin. Oncol.20131693594110.3892/mco.2013.172 24649273
    [Google Scholar]
  53. HanB. CaiJ. GaoW. Loss of ATRX suppresses ATM dependent DNA damage repair by modulating H3K9me3 to enhance temozolomide sensitivity in glioma.Cancer Lett.201841928029010.1016/j.canlet.2018.01.056 29378238
    [Google Scholar]
  54. HanN. HuG. ShiL. Notch1 ablation radiosensitizes glioblastoma cells.Oncotarget2017850880598806810.18632/oncotarget.21409 29152141
    [Google Scholar]
  55. Hoang-MinhL.B. DeleyrolleL.P. NakamuraN.S. PCM1 depletion inhibits glioblastoma cell ciliogenesis and increases cell death and sensitivity to temozolomide.Transl. Oncol.20169539240210.1016/j.tranon.2016.08.006 27661404
    [Google Scholar]
  56. RanjanA. SrivastavaS.K. Penfluridol suppresses glioblastoma tumor growth by Akt-mediated inhibition of GLI1.Oncotarget2017820329603297610.18632/oncotarget.16515 28380428
    [Google Scholar]
  57. SunX. HouW. LiuX. ChaiJ. GuoH. YuJ. Targeting REV7 effectively reverses 5-FU and oxaliplatin resistance in colorectal cancer.Cancer Cell Int.202020158010.1186/s12935‑020‑01668‑z 33292253
    [Google Scholar]
  58. HaghighiN. DoostiA. KianiJ. Evaluation of CRISPR/Cas9 system effects on knocking out NEAT1 gene in AGS gastric cancer cell line with therapeutic perspective.J. Gastrointest. Cancer202253362363110.1007/s12029‑021‑00669‑z 34357544
    [Google Scholar]
  59. IzumiD. TodenS. UretaE. IshimotoT. BabaH. GoelA. TIAM1 promotes chemoresistance and tumor invasiveness in colorectal cancer.Cell Death Dis.201910426710.1038/s41419‑019‑1493‑5 30890693
    [Google Scholar]
  60. HosainS.B. KhisteS.K. UddinM.B. Inhibition of glucosylceramide synthase eliminates the oncogenic function of p53 R273H mutant in the epithelial-mesenchymal transition and induced pluripotency of colon cancer cells.Oncotarget2016737605756059210.18632/oncotarget.11169 27517620
    [Google Scholar]
  61. XiaD. JiW. XuC. Knockout of MARCH2 inhibits the growth of HCT116 colon cancer cells by inducing endoplasmic reticulum stress.Cell Death Dis.201787e2957e710.1038/cddis.2017.347 28749466
    [Google Scholar]
  62. DrostJ. van JaarsveldR.H. PonsioenB. Sequential cancer mutations in cultured human intestinal stem cells.Nature20155217550434710.1038/nature14415 25924068
    [Google Scholar]
  63. YanF. YingL. LiX. Overexpression of the transcription factor ATF3 with a regulatory molecular signature associates with the pathogenic development of colorectal cancer.Oncotarget2017829470204703610.18632/oncotarget.16638 28402947
    [Google Scholar]
  64. LautzZ.A. The Significance of CRISPR/Cas9-Directed CUL3 Knockout on Human Colorectal Cancer Cells.Depart Honors Projects201540
    [Google Scholar]
  65. OhS. YouE. KoP. JeongJ. KeumS. RheeS. Genetic disruption of tubulin acetyltransferase, αTAT1, inhibits proliferation and invasion of colon cancer cells through decreases in Wnt1/β-catenin signaling.Biochem. Biophys. Res. Commun.2017482181410.1016/j.bbrc.2016.11.039 27836544
    [Google Scholar]
  66. KlineC.L.B. RalffM.D. LullaA.R. Role of dopamine receptors in the anticancer activity of ONC201.Neoplasia2018201809110.1016/j.neo.2017.10.002 29216597
    [Google Scholar]
  67. JooJ.H. OhH. KimM. NADPH oxidase 1 activity and ROS generation are regulated by Grb2/Cbl-mediated proteasomal degradation of NoxO1 in colon cancer cells.Cancer Res.201676485586510.1158/0008‑5472.CAN‑15‑1512 26781991
    [Google Scholar]
  68. TakeiN. YonedaA. Sakai-SawadaK. KosakaM. MinomiK. TamuraY. Hypoxia-inducible ERO1α promotes cancer progression through modulation of integrin-β1 modification and signalling in HCT116 colorectal cancer cells.Sci. Rep.201771938910.1038/s41598‑017‑09976‑7
    [Google Scholar]
  69. WanC. MaharaS. SunC. DoanA. ChuaH.K. XuD. Genome-scale CRISPR-Cas9 screen of Wnt/β-catenin signaling identifies therapeutic targets for colorectal cancer.Sci. Adv.2021721eabf256710.1126/sciadv.abf2567
    [Google Scholar]
  70. DaiC. ZhangX. XieD. Targeting PP2A activates AMPK signaling to inhibit colorectal cancer cells.Oncotarget2017856958109582310.18632/oncotarget.21336 29221169
    [Google Scholar]
  71. ZhaoL-h. LiQ. HuangZ-J. SunM-X. LuJ-j. ZhangX-h. Identification of histone methyltransferase NSD2 as an important oncogenic gene in colorectal cancer.Cell Death Dis.20211211974
    [Google Scholar]
  72. YoshidaK. TodenS. WengW. ShigeyasuK. MiyoshiJ. TurnerJ. SNORA21–an oncogenic small nucleolar RNA, with a prognostic biomarker potential in human colorectal cancer.EBioMedicine201722687710.1016/j.ebiom.2017.07.009
    [Google Scholar]
  73. YuC. LuoD. YuJ. ZhangM. ZhengX. XuG. Genome-wide CRISPR-cas9 knockout screening identifies GRB7 as a driver for MEK inhibitor resistance in KRAS mutant colon cancer.Oncogene2022412191203
    [Google Scholar]
  74. NovellasdemuntL. FoglizzoV. CuadradoL. USP7 is a tumor-specific WNT activator for APC-mutated colorectal cancer by mediating β-catenin deubiquitination.Cell Rep.201721361262710.1016/j.celrep.2017.09.072 29045831
    [Google Scholar]
  75. BlatnerP. Genetic editing out the tumor growth supressor gene TRM9L in colorectal cancer models using CRISPR-Cas9. Nanos Sci Eng201716
    [Google Scholar]
  76. TakedaH. KataokaS. NakayamaM. CRISPR-Cas9–mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes.Proc. Natl. Acad. Sci. 201911631156351564410.1073/pnas.1904714116 31300537
    [Google Scholar]
  77. MatanoM. ShimokawaM. TakanoA. FujiiM. OhtaY. WatanabeT. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids.Nat. Med.2015213256262
    [Google Scholar]
  78. MichelsB.E. MosaM.H. StreiblB.I. ZhanT. MencheC. Abou-El-ArdatK. Pooled in vitro and in vivo CRISPR-Cas9 screening identifies tumor suppressors in human colon organoids.Cell Stem Cell202026578279210.1016/j.stem.2020.04.003
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240243076231116080113
Loading
/content/journals/cmm/10.2174/0115665240243076231116080113
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test