Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

Radiosensitivity remains an important factor affecting the clinical outcome of radiotherapy for non-small cell lung cancer (NSCLC). Liver kinase B1 (LKB1) as a tumor suppressor, is one of the most commonly mutated genes in NSCLC. However, the role of LKB1 on radiosensitivity and the possible mechanism have not been elucidated in the NSCLC. In this study, we investigated the regulatory function of LKB1 in the radiosensitivity of NSCLC cells and its possible signaling pathways.

Methods

After regulating the expression of LKB1, cell proliferation was determined by Cell Counting Kit-8 (CCK-8) assay. The flow cytometry assay was used to analyse cell cycle distribution. Survival fraction and sensitization enhancement ratio (SER) were generated by clonogenic survival assay. Western blot analysis was used to assess expression levels of LKB1, p53, p21, γ-H2AX and p-Chk2.

Results

Our study found that when the NSCLC cells were exposed to ionizing radiation, LKB1 could inhibit NSCLC cell proliferation by promoting DNA double strand break and inducing DNA repair. In addition, LKB1 could induce NSCLC cells G1 and G2/M phase arrest through up-regulating expression of p53 and p21 proteins.

Conclusion

This current study demonstrates that LKB1 enhances the radiosensitivity of NSCLC cells inhibiting NSCLC cell proliferation and inducing G2/M phase arrest, and the mechanism of cell cycle arrest associated with signaling pathways of p53 and p21 probably.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240280822231221060656
2025-03-01
2025-04-22
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCA N estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. XiaC. DongX. LiH. Cancer statistics in China and United States, 2022: profiles, trends, and determinants.Chin. Med. J. 2022135558459010.1097/CM9.0000000000002108 35143424
    [Google Scholar]
  3. ZengX. MaQ. LiX.K. Patient-derived organoids of lung cancer based on organoids-on-a-chip: Enhancing clinical and translational applications.Front. Bioeng. Biotechnol.202311120515710.3389/fbioe.2023.1205157 37304140
    [Google Scholar]
  4. FengQ. XiaoK. Nanoparticle-mediated delivery of STAT3 inhibitors in the treatment of lung cancer.Pharmaceutics20221412278710.3390/pharmaceutics14122787 36559280
    [Google Scholar]
  5. VinodS.K. HauE. Radiotherapy treatment for lung cancer: Current status and future directions.Respirology202025S2Suppl. 2617110.1111/resp.13870 32516852
    [Google Scholar]
  6. WuK. ChenX. ChenX. Suberoylanilide hydroxamic acid enhances the radiosensitivity of lung cancer cells through acetylated wild-type and mutant p53-dependent modulation of mitochondrial apoptosis.J. Int. Med. Res.202149210.1177/0300060520981545 33557658
    [Google Scholar]
  7. WeeC.W. KimJ.H. KimH.J. Newly synthesized DNA methyltransferase inhibitors as radiosensitizers for human lung cancer and glioblastoma cells.Anticancer Res.202141275776410.21873/anticanres.14827 33517280
    [Google Scholar]
  8. KimS.Y. JeongE.H. LeeT.G. KimH.R. KimC.H. The combination of trametinib, a MEK inhibitor, and temsirolimus, an mtor inhibitor, radiosensitizes lung cancer cells.Anticancer Res.20214162885289410.21873/anticanres.15070 34083279
    [Google Scholar]
  9. LeiX. DuL. ZhangP. Knockdown GTSE1 enhances radiosensitivity in non–small‐cell lung cancer through DNA damage repair pathway.J. Cell. Mol. Med.20202495162516710.1111/jcmm.15165 32202046
    [Google Scholar]
  10. XueA. ShangY. JiaoP. Increased activation of cGAS‐STING pathway enhances radiosensitivity of non‐small cell lung cancer cells.Thorac. Cancer20221391361136810.1111/1759‑7714.14400 35429143
    [Google Scholar]
  11. SunX. DongM. GaoY. Metformin increases the radiosensitivity of non-small cell lung cancer cells by destabilizing NRF2.Biochem. Pharmacol.202219911498110.1016/j.bcp.2022.114981 35227644
    [Google Scholar]
  12. LiH. ZhaoS. ChenX. FengG. ChenZ. FanS. MiR-145 modulates the radiosensitivity of non-small cell lung cancer cells by suppression of TMOD3.Carcinogenesis202243328829610.1093/carcin/bgab121 34888652
    [Google Scholar]
  13. SkoulidisF. HeymachJ.V. Co-occurring genomic alterations in non-small-cell lungcancer biology and therapy.Nat. Rev. Cancer2019949550910.1038/s41568‑019‑0179‑8 31406302
    [Google Scholar]
  14. SitthideatphaiboonP. Galan-CoboA. NegraoM.V. STK11/LKB1 mutations in NSCLC are associated with KEAP1/NRF2-dependent radiotherapy resistance targetable by glutaminase inhibition.Clin. Cancer Res.20212761720173310.1158/1078‑0432.CCR‑20‑2859
    [Google Scholar]
  15. BorziC. GanzinelliM. CaiolaE. LKB1 down-modulation by miR-17 identifies patients with nsclc having worse prognosis eligible for energy-stress-based treatments.J. Thorac. Oncol.20211681298131110.1016/j.jtho.2021.04.005
    [Google Scholar]
  16. Pons-TostivintE. LugatA. FontenauJ.F. DenisM.G. BennounaJ. STK11/LKB1 Modulation of the immune response in lung cancer: From biology to therapeutic impact.Cells20211011312910.3390/cells10113129 34831355
    [Google Scholar]
  17. NdembeG. IntiniI. PerinE. LKB1: Can we target an hidden target? Focus on NSCLC.Front. Oncol.20221288982610.3389/fonc.2022.889826
    [Google Scholar]
  18. SumblyV. LandryI. Unraveling the role of STK11/LKB1 in non-small cell lung cancer.Cureus2022141e2107810.7759/cureus.21078 35165542
    [Google Scholar]
  19. MurrayC.W. BradyJ.J. TsaiM.K. An LKB1–SIK axis suppresses lung tumor growth and controls differentiation.Cancer Discov.20199111590160510.1158/2159‑8290.CD‑18‑1237 31350327
    [Google Scholar]
  20. WangY. YangL. YangY. LiY. Liver kinase B1 (LKB1) regulates proliferation and apoptosis of non-small cell lung cancer A549 cells via targeting ERK signaling pathway.Cancer Manag. Res.202113657410.2147/CMAR.S282417 33442295
    [Google Scholar]
  21. LuJ. ZhouZ. TangM. Role of LKB1 in migration and invasion of Cr(VI)-transformed human bronchial epithelial Beas-2B cells.Anticancer Drugs201829766067310.1097/CAD.0000000000000638 29782351
    [Google Scholar]
  22. ZulatoE. CiccareseF. NardoG. Involvement of NADPH oxidase 1 in liver kinase B1-mediated effects on tumor angiogenesis and growth.Front. Oncol.2018819510.3389/fonc.2018.00195 29915721
    [Google Scholar]
  23. HollsteinP.E. EichnerL.J. BrunS.N. The AMPK-related kinases SIK1 and SIK3 mediate key tumor-suppressive effects of LKB1 in NSCLC.Cancer Discov.20199111606162710.1158/2159‑8290.CD‑18‑1261 31350328
    [Google Scholar]
  24. YangR. LiS.W. ChenZ. Role of INSL4 signaling in sustaining the growth and viability of LKB1-inactivated lung cancer.J. Natl. Cancer Inst.2019111766467410.1093/jnci/djy166 30423141
    [Google Scholar]
  25. ZhangY. MengQ. SunQ. XuZ.X. ZhouH. WangY. LKB1 deficiency-induced metabolic reprogramming in tumorigenesis and non-neoplastic diseases.Mol. Metab.20214410113110.1016/j.molmet.2020.101131 33278637
    [Google Scholar]
  26. MograbiB. HeekeS. HofmanP. The importance of STK11/LKB1 assessment in non-small cell lung carcinomas.Diagnostics 202111219610.3390/diagnostics11020196 33572782
    [Google Scholar]
  27. PanditM. TimilshinaM. ChangJ.H. LKB1-PTEN axis controls Th1 and Th17 cell differentiation via regulating mTORC1.J. Mol. Med. 20219981139115010.1007/s00109‑021‑02090‑2 34003330
    [Google Scholar]
  28. LiF. HanX. LiF. LKB1 inactivation elicits a redox imbalance to modulate non-small cell lung cancer plasticity and therapeutic response.Cancer Cell201527569871110.1016/j.ccell.2015.04.001 25936644
    [Google Scholar]
  29. PoreN. WuS. StandiferN. resistance to durvalumab and durvalumab plus tremelimumab is associated with functional STK11 mutations in patients with non–small cell lung cancer and is reversed by STAT3 knockdown.Cancer Discov.202111112828284510.1158/2159‑8290.CD‑20‑1543 34230008
    [Google Scholar]
  30. MerazI.M. MajidiM. ShaoR. TUSC2 immunogene enhances efficacy of chemo-immuno combination on KRAS/LKB1 mutant NSCLC in humanized mouse model.Commun. Biol.20225116710.1038/s42003‑022‑03103‑7 35210547
    [Google Scholar]
  31. YangK. BlancoD.B. NealeG. Homeostatic control of metabolic and functional fitness of Treg cells by LKB1 signalling.Nature2017548766960260610.1038/nature23665 28847007
    [Google Scholar]
  32. DengJ. ThennavanA. DolgalevI. ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1-mutant lung cancer.Nat. Can.20212550351410.1038/s43018‑021‑00208‑6 34142094
    [Google Scholar]
  33. RoselliniP. AmintasS. CaumontC. Clinical impact of STK11 mutation in advanced-stage non-small cell lung cancer.Eur. J. Cancer2022172859510.1016/j.ejca.2022.05.026 35759814
    [Google Scholar]
  34. YaoY.H. CuiY. QiuX.N. Attenuated LKB1-SIK1 signaling promotes epithelial-mesenchymal transition and radioresistance of non–small cell lung cancer cells.Chin. J. Cancer20163515010.1186/s40880‑016‑0113‑3 27266881
    [Google Scholar]
  35. DuW.Y. LuZ.H. YeW. The loss-of-function mutations and down-regulated expression of ASB3 gene promote the growth and metastasis of colorectal cancer cells.Chin. J. Cancer20173611110.1186/s40880‑017‑0180‑0 28088228
    [Google Scholar]
  36. ZulatoE. CiccareseF. AgnusdeiV. LKB1 loss is associated with glutathione deficiency under oxidative stress and sensitivity of cancer cells to cytotoxic drugs and γ-irradiation.Biochem. Pharmacol.201815647949010.1016/j.bcp.2018.09.019 30222967
    [Google Scholar]
  37. WangY. LiN. JiangW. Mutant LKB1 confers enhanced radiosensitization in combination with trametinib in KRAS-mutant non-small cell lung cancer.Clin. Cancer Res.201824225744575610.1158/1078‑0432.CCR‑18‑1489
    [Google Scholar]
  38. WilliamsonJ. HughesC.M. BurkeG. DavisonG.W. A combined γ-H2AX and 53BP1 approach to determine the DNA damage-repair response to exercise in hypoxia.Free Radic. Biol. Med.202015491710.1016/j.freeradbiomed.2020.04.026 32360611
    [Google Scholar]
  39. GrasselliC. BombelliS. ErianiS. DNA damage in circulating hematopoietic progenitor stem cells as promising biological sensor of frailty.J. Gerontol. A Biol. Sci. Med. Sci.20227771279128610.1093/gerona/glac034 35137086
    [Google Scholar]
  40. KuoL.J. YangL.X. Gamma-H2AX - a novel biomarker for DNA double-strand breaks.In Vivo2008223305309 18610740
    [Google Scholar]
  41. KinnerA. WuW. StaudtC. IliakisG. -H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin.Nucleic Acids Res.200836175678569410.1093/nar/gkn550 18772227
    [Google Scholar]
  42. SharmaA. SinghK. AlmasanA. Histone H2AX phosphorylation: A marker for DNA damage.Methods Mol. Biol.201292061362610.1007/978‑1‑61779‑998‑3_40 22941631
    [Google Scholar]
  43. NagelkerkeA. SpanP.N. Staining against phospho-H2AX (γ-H2AX) as a marker for dna damage and genomic instability in cancer tissues and cells.Adv. Exp. Med. Biol.201689911010.1007/978‑3‑319‑26666‑4_1 27325258
    [Google Scholar]
  44. PallaV.V. KaraolanisG. KatafigiotisI. gamma-H2AX: Can it be established as a classical cancer prognostic factor?Tumour Biol.201739310.1177/1010428317695931 28351323
    [Google Scholar]
  45. ZhangY. CongL. HeJ. Photothermal treatment with EGFRmAb-AuNPs induces apoptosis in hypopharyngeal carcinoma cells via PI3K/AKT/mTOR and DNA damage response pathways.Acta Biochim. Biophys. Sin. 201850656757810.1093/abbs/gmy046
    [Google Scholar]
  46. DaiRQ WangHB LiuWQ LiLW WangW Triptolide increases the radiosensitivity of lung cancer cells by inhibiting DNA repair and inducing apoptosis. Z red flower Z red l IU za Z Hi2021431212354010.3760/cma.j.cn112152‑20191212‑0080034915630
    [Google Scholar]
  47. MaiuthedA. NinsontiaC. Erlenbach-WuenschK. Cytoplasmic p21 mediates 5-fluorouracil resistance by inhibiting pro-apoptotic Chk2.Cancers 2018101037310.3390/cancers10100373 30304835
    [Google Scholar]
  48. JiangJ. HuangY. WangW. Activation of ATM/Chk2 by Zanthoxylum armatum DC extract induces DNA damage and G1/S phase arrest in BRL 3A cells.J. Ethnopharmacol.202228411483210.1016/j.jep.2021.114832 34775036
    [Google Scholar]
  49. BianH. GuY. ChenC. Silence of URI in gastric cancer cells promotes cisplatin-induced DNA damage and apoptosis.Am. J. Cancer Res.2023133936949 37034221
    [Google Scholar]
  50. NieX. GuoE. WuC. SALL 4 induces radioresistance in nasopharyngeal carcinoma via the ATM/Chk2/p53 pathway.Cancer Med.2019841779179210.1002/cam4.2056 30907073
    [Google Scholar]
  51. TsoiH. TsangW.C. ManE.P.S. Checkpoint kinase 2 inhibition can reverse tamoxifen resistance in ER-positive breast cancer.Int. J. Mol. Sci.202223201229010.3390/ijms232012290 36293165
    [Google Scholar]
  52. ZhangT. RenT. LinH. ASH1L contributes to oocyte apoptosis by regulating DNA damage.Am. J. Physiol. Cell Physiol.20223234C1264C127310.1152/ajpcell.00196.2022 36094439
    [Google Scholar]
  53. KangS.H. BakD.H. ChungB.Y. BaiH.W. Centipedegrass extract enhances radiosensitivity in melanoma cells by inducing G2/M cell cycle phase arrest.Mol. Biol. Rep.20214821081109110.1007/s11033‑021‑06156‑9 33511511
    [Google Scholar]
  54. PawlikT.M. KeyomarsiK. Role of cell cycle in mediating sensitivity to radiotherapy.Int. J. Radiat. Oncol. Biol. Phys.200459492894210.1016/j.ijrobp.2004.03.005 15234026
    [Google Scholar]
  55. WangY. OdaS. SuzukiM.G. MitaniH. AokiF. Cell cycle-dependent radiosensitivity in mouse zygotes.DNA Repair 202211710337010.1016/j.dnarep.2022.103370 35863142
    [Google Scholar]
  56. ZhaoP.J. SongS.C. DuL.W. Paris Saponins enhance radiosensitivity in a gefitinib-resistant lung adenocarcinoma cell line by inducing apoptosis and G2/M cell cycle phase arrest.Mol. Med. Rep.20161332878288410.3892/mmr.2016.4865 26846193
    [Google Scholar]
  57. NakayamaM. KaidaA. DeguchiS. SakaguchiK. MiuraM. Radiosensitivity of early and late M-phase HeLa cells isolated by a combination of fluorescent ubiquitination-based cell cycle indicator (Fucci) and mitotic shake-off.Radiat. Res.2011176340741110.1667/RR2608.1 21692656
    [Google Scholar]
  58. GuiS.J. DingR.L. WanY.P. Knockdown of annexin VII enhances nasopharyngeal carcinoma cell radiosensitivity in vivo and in vitro.Cancer Biomark.202028212913910.3233/CBM‑190739 31958076
    [Google Scholar]
  59. HaasM. LenzT. Kadletz-WankeL. HeiduschkaG. JankB.J. The radiosensitizing effect of β-Thujaplicin, a tropolone derivative inducing S-phase cell cycle arrest, in head and neck squamous cell carcinoma-derived cell lines.Invest. New Drugs202240470070810.1007/s10637‑022‑01229‑3 35412173
    [Google Scholar]
  60. DuC. TianY. DuanW. ChenX. RenW. DengQ. Curcumin enhances the radiosensitivity of human urethral scar fibroblasts by apoptosis, cell cycle arrest and downregulation of Smad4 via autophagy.Radiat. Res.2021195545246210.1667/RADE‑20‑00239.1 33755170
    [Google Scholar]
  61. EngelandK. Cell cycle regulation: P53-p21-RB signaling.Cell Death Differ.202229594696010.1038/s41418‑022‑00988‑z 35361964
    [Google Scholar]
  62. KarimianA. AhmadiY. YousefiB. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage.DNA Repair 201642637110.1016/j.dnarep.2016.04.008 27156098
    [Google Scholar]
  63. EngelandK. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM.Cell Death Differ.201825111413210.1038/cdd.2017.172 29125603
    [Google Scholar]
  64. GuanL. CrastaK.C. MaierA.B. Assessment of cell cycle regulators in human peripheral blood cells as markers of cellular senescence.Ageing Res. Rev.20227810163410.1016/j.arr.2022.101634 35460888
    [Google Scholar]
  65. TranA.P. TralieC.J. ReyesJ. Long-term p21 and p53 dynamics regulate the frequency of mitosis events and cell cycle arrest following radiation damage.Cell Death Differ.202330366067210.1038/s41418‑022‑01069‑x 36182991
    [Google Scholar]
  66. FischerM. QuaasM. SteinerL. EngelandK. The p53-p21-DREAM-CDE/CHR pathway regulates G 2/M cell cycle genes.Nucleic Acids Res.201644116417410.1093/nar/gkv927 26384566
    [Google Scholar]
  67. YuL. QiuW. GaoY. JNK1 activated pRb/E2F1 and inhibited p53/p21 signaling pathway is involved in hydroquinone‐induced pathway malignant transformation of TK6 cells by accelerating the cell cycle progression.Environ. Toxicol.202338102344235110.1002/tox.23870 37347496
    [Google Scholar]
  68. DengL. YaoP. LiL. p53-mediated control of aspartate-asparagine homeostasis dictates LKB1 activity and modulates cell survival.Nat. Commun.2020111175510.1038/s41467‑020‑15573‑6 32273511
    [Google Scholar]
  69. HuangS.W. ChyuanI.T. ShiueC. YuM.C. HsuY.F. HsuM.J. Lovastatin‐mediated MCF‐7 cancer cell death involves LKB1‐AMPK‐p38MAPK‐p53‐survivin signalling cascade.J. Cell. Mol. Med.20202421822183610.1111/jcmm.14879 31821701
    [Google Scholar]
  70. GomesA.S. RamosH. SoaresJ. SaraivaL. p53 and glucose metabolism: An orchestra to be directed in cancer therapy.Pharmacol. Res.2018131758610.1016/j.phrs.2018.03.015 29580896
    [Google Scholar]
  71. TronconeM. CargnelliS.M. VillaniL.A. Targeting metabolism and AMP-activated kinase with metformin to sensitize non-small cell lung cancer (NSCLC) to cytotoxic therapy: Translational biology and rationale for current clinical trials.Oncotarget2017834577335775410.18632/oncotarget.17496 28915708
    [Google Scholar]
  72. ZhangS.X. TianW. LiuY.L. Mechanism of N-Methyl-N-Nitroso-Urea-Induced gastric precancerous lesions in mice.J. Oncol.202220221910.1155/2022/3780854 35342404
    [Google Scholar]
  73. SungJ.Y. WooC.H. KangY.J. LeeK.Y. ChoiH.C. AMPK induces vascular smooth muscle cell senescence via LKB1 dependent pathway.Biochem. Biophys. Res. Commun.2011413114314810.1016/j.bbrc.2011.08.071 21872575
    [Google Scholar]
  74. LiuT. QinW. HouL. HuangY. MicroRNA-17 promotes normal ovarian cancer cells to cancer stem cells development via suppression of the LKB1-p53-p21/WAF1 pathway.Tumour Biol.20153631881189310.1007/s13277‑014‑2790‑3 25510663
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240280822231221060656
Loading
/content/journals/cmm/10.2174/0115665240280822231221060656
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test