Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

Aerobic organisms continuously generate small amounts of Reactive Oxygen Species (ROS), which are involved in the oxidation of sensitive cysteine residues in proteins, leading to the formation of disulfide bonds. Thioredoxin (Trx1) and Glutaredoxin (Grx1) represent key antioxidant enzymes reducing disulfide bonds.

Objective

In this work, we have focused on the possible protective effect of Trx1 and Grx1 against oxidative stress-induced DNA damage and apoptosis-signaling, by studying the phosphorylation of MAP kinases.

Methods

Trx1 and Grx1 were overexpressed or silenced in cultured H1299 non-small cell lung cancer epithelial cells. We examined cell growth, DNA damage, and the phosphorylation status of MAP kinases following treatment with HO.

Results

Overexpression of both Trx1 and Grx1 had a significant impact on the growth of H1299 cells and provided protection against HO-induced toxicity, as well as acute DNA single-strand breaks. Conversely, silencing of these proteins exacerbated DNA damage. Furthermore, overexpression of Trx1 and Grx1 inhibited the rapid phosphorylation of JNK (especially at 360 min of treatment, ****0.004 and **0.0033 respectively) and p38 MAP kinases (especially at 360 min of treatment, ****0.0001 and ***0.0008 respectively) during HO exposure, while their silencing had the opposite effect (especially at 360 min of treatment, ****0.0001).

Conclusion

These results suggest that both Trx1 and Grx1 have protective roles against HO induced toxicity, emphasizing their significance in mitigating oxidative stress-related cellular damage.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240271103231127072635
2025-03-01
2025-04-22
Loading full text...

Full text loading...

References

  1. JenaA.B. SamalR.R. BholN.K. DuttaroyA.K. Cellular Red-Ox system in health and disease: The latest update.Biomed. Pharmacother.202316211460610.1016/j.biopha.2023.114606 36989716
    [Google Scholar]
  2. ZuoJ. ZhangZ. LuoM. Redox signaling at the crossroads of human health and disease.MedComm202232e127
    [Google Scholar]
  3. MaillouxR.J. An Update on Mitochondrial Reactive Oxygen Species Production.Antioxidants20209647210.3390/antiox9060472 32498250
    [Google Scholar]
  4. RayP.D. HuangB.W. TsujiY. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling.Cell. Signal.201224598199010.1016/j.cellsig.2012.01.008 22286106
    [Google Scholar]
  5. JiL.L. YeoD. Oxidative stress: An evolving definition.Fac. Rev.2021101310.12703/r/10‑13 33659931
    [Google Scholar]
  6. McCordJ.M. The evolution of free radicals and oxidative stress.Am. J. Med.2000108865265910.1016/S0002‑9343(00)00412‑5 10856414
    [Google Scholar]
  7. JuanC.A. Pérez de la LastraJ.M. PlouF.J. Pérez-LebeñaE. The chemistry of reactive oxygen species (ROS) Revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies.Int. J. Mol. Sci.2021229464210.3390/ijms22094642 33924958
    [Google Scholar]
  8. BenharM. Oxidants, antioxidants and thiol redox switches in the control of regulated cell death pathways.Antioxidants20209430910.3390/antiox9040309 32290499
    [Google Scholar]
  9. BurgoyneJ.R. OkaS. Ale-AghaN. EatonP. Hydrogen peroxide sensing and signaling by protein kinases in the cardiovascular system.Antioxid. Redox Signal.20131891042105210.1089/ars.2012.4817 22867279
    [Google Scholar]
  10. StoneJ.R. YangS. Hydrogen peroxide: A signaling messenger.Antioxid. Redox Signal.200683-424327010.1089/ars.2006.8.243 16677071
    [Google Scholar]
  11. VaškováJ. KočanL. VaškoL. PerjésiP. Glutathione-Related Enzymes and Proteins: A Review.Molecules2023283144710.3390/molecules28031447 36771108
    [Google Scholar]
  12. KukulageD.S.K. Matarage DonN.N.J. AhnY.H. Emerging chemistry and biology in protein glutathionylation.Curr. Opin. Chem. Biol.20227110222110.1016/j.cbpa.2022.102221 36223700
    [Google Scholar]
  13. KalininaE. NovichkovaM. Glutathione in protein redox modulation through S-glutathionylation and S-nitrosylation.Molecules202126243510.3390/molecules26020435 33467703
    [Google Scholar]
  14. GhezziP. Protein glutathionylation in health and disease.Biochim. Biophys. Acta, Gen. Subj.2013183053165317210.1016/j.bbagen.2013.02.009 23416063
    [Google Scholar]
  15. MieyalJ.J. GalloglyM.M. QanungoS. SabensE.A. SheltonM.D. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation.Antioxid. Redox Signal.200810111941198810.1089/ars.2008.2089 18774901
    [Google Scholar]
  16. GalloglyM.M. MieyalJ.J. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress.Curr. Opin. Pharmacol.20077438139110.1016/j.coph.2007.06.003 17662654
    [Google Scholar]
  17. HanschmannE.M. GodoyJ.R. BerndtC. HudemannC. LilligC.H. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: From cofactors to antioxidants to redox signaling.Antioxid. Redox Signal.201319131539160510.1089/ars.2012.4599 23397885
    [Google Scholar]
  18. MicheletL. ZaffagniniM. MassotV. Thioredoxins, glutaredoxins, and glutathionylation: New crosstalks to explore.Photosynth. Res.2006892-322524510.1007/s11120‑006‑9096‑2 17089213
    [Google Scholar]
  19. HolmgrenA. Thioredoxin and glutaredoxin systems.J. Biol. Chem.198926424139631396610.1016/S0021‑9258(18)71625‑6 2668278
    [Google Scholar]
  20. Xinastle-CastilloL.O. LandaA. Physiological and modulatory role of thioredoxins in the cellular function.Open Med. (Wars.)20221712021203510.1515/med‑2022‑0596 36568514
    [Google Scholar]
  21. HasanA.A. KalininaE. TatarskiyV. ShtilA. The thioredoxin system of mammalian cells and its modulators.Biomedicines2022107175710.3390/biomedicines10071757 35885063
    [Google Scholar]
  22. LuJ. HolmgrenA. The thioredoxin antioxidant system.Free Radic. Biol. Med.201466758710.1016/j.freeradbiomed.2013.07.036 23899494
    [Google Scholar]
  23. LeeS. KimS.M. LeeR.T. Thioredoxin and thioredoxin target proteins: From molecular mechanisms to functional significance.Antioxid. Redox Signal.201318101165120710.1089/ars.2011.4322 22607099
    [Google Scholar]
  24. OgataF.T. BrancoV. ValeF.F. CoppoL. Glutaredoxin: Discovery, redox defense and much more.Redox Biol.20214310197510.1016/j.redox.2021.101975 33932870
    [Google Scholar]
  25. MatsuiR. FerranB. OhA. Redox regulation via glutaredoxin-1 and protein S-glutathionylation.Antioxid. Redox Signal.2020321067770010.1089/ars.2019.7963 31813265
    [Google Scholar]
  26. YueJ. LópezJ.M. Understanding MAPK signaling pathways in apoptosis.Int. J. Mol. Sci.2020217234610.3390/ijms21072346 32231094
    [Google Scholar]
  27. SunY. LiuW.Z. LiuT. FengX. YangN. ZhouH.F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis.J. Recept. Signal Transduct. Res.201535660060410.3109/10799893.2015.1030412 26096166
    [Google Scholar]
  28. KimE.K. ChoiE.J. Compromised MAPK signaling in human diseases: An update.Arch. Toxicol.201589686788210.1007/s00204‑015‑1472‑2 25690731
    [Google Scholar]
  29. PetiW. PageR. Molecular basis of MAP kinase regulation.Protein Sci.201322121698171010.1002/pro.2374 24115095
    [Google Scholar]
  30. MorrisonD.K. Cold Spring Harb. Perspect. Biol.20124
    [Google Scholar]
  31. CargnelloM. RouxP.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases.Microbiol. Mol. Biol. Rev.2011751508310.1128/MMBR.00031‑10 21372320
    [Google Scholar]
  32. TakekawaM. KubotaY. NakamuraT. IchikawaK. Regulation of stress-activated MAP kinase pathways during cell fate decisions.Nagoya J. Med. Sci.2011731-2114 21614932
    [Google Scholar]
  33. CuadradoA. NebredaA.R. Mechanisms and functions of p38 MAPK signalling.Biochem. J.2010429340341710.1042/BJ20100323 20626350
    [Google Scholar]
  34. KimE.K. ChoiE.J. Pathological roles of MAPK signaling pathways in human diseases.Biochim. Biophys. Acta Mol. Basis Dis.20101802439640510.1016/j.bbadis.2009.12.009 20079433
    [Google Scholar]
  35. TobiumeK. MatsuzawaA. TakahashiT. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis.EMBO Rep.20012322222810.1093/embo‑reports/kve046 11266364
    [Google Scholar]
  36. ObsilT. ObsilovaV. Structural aspects of protein kinase ASK1 regulation.Adv. Biol. Regul.201766313610.1016/j.jbior.2017.10.002 29066278
    [Google Scholar]
  37. ShiizakiS. NaguroI. IchijoH. Activation mechanisms of ASK1 in response to various stresses and its significance in intracellular signaling.Adv. Biol. Regul.201353113514410.1016/j.jbior.2012.09.006 23031789
    [Google Scholar]
  38. SogaM. MatsuzawaA. IchijoH. Oxidative stress-induced diseases via the ASK1 signaling pathway.Int. J. Cell Biol.201220121510.1155/2012/439587 22654913
    [Google Scholar]
  39. MatsuzawaA. IchijoH. Biochim. Biophys. Acta2008178013251336
    [Google Scholar]
  40. FujinoG. NoguchiT. TakedaK. IchijoH. Thioredoxin and protein kinases in redox signaling.Semin. Cancer Biol.200616642743510.1016/j.semcancer.2006.09.003 17081769
    [Google Scholar]
  41. AllenE.M.G. MieyalJ.J. Protein-thiol oxidation and cell death: Regulatory role of glutaredoxins.Antioxid. Redox Signal.201217121748176310.1089/ars.2012.4644 22530666
    [Google Scholar]
  42. KoufakiM. TheodorouE. GalarisD. NousisL. KatsanouE.S. AlexisM.N. Chroman/catechol hybrids: Synthesis and evaluation of their activity against oxidative stress induced cellular damage.J. Med. Chem.200649130030610.1021/jm0506120 16392814
    [Google Scholar]
  43. BarboutiA. DouliasP.T. NousisL. TenopoulouM. GalarisD. DNA damage and apoptosis in hydrogen peroxide-exposed Jurkat cells: Bolus addition versus continuous generation of H2O2.Free Radic. Biol. Med.200233569170210.1016/S0891‑5849(02)00967‑X 12208356
    [Google Scholar]
  44. KitsatiN. MantzarisM.D. GalarisD. Hydroxytyrosol inhibits hydrogen peroxide-induced apoptotic signaling via labile iron chelation.Redox Biol.20161023324210.1016/j.redox.2016.10.006 27810738
    [Google Scholar]
  45. MantzarisM.D. BellouS. SkiadaV. KitsatiN. FotsisT. GalarisD. Intracellular labile iron determines H 2 O 2 -induced apoptotic signaling via sustained activation of ASK1/JNK-p38 axis.Free Radic. Biol. Med.20169745446510.1016/j.freeradbiomed.2016.07.002 27387771
    [Google Scholar]
  46. SongJ.S. ChoH.H. LeeB.J. BaeY.C. JungJ.S. Role of thioredoxin 1 and thioredoxin 2 on proliferation of human adipose tissue-derived mesenchymal stem cells.Stem Cells Dev.20112091529153710.1089/scd.2010.0364 21158569
    [Google Scholar]
  47. ParkW.H. Upregulated thioredoxin and its reductase prevent H2O2-induced growth inhibition and death in human pulmonary artery smooth muscle cells.Toxicol. In Vitro20196110459010.1016/j.tiv.2019.104590 31279089
    [Google Scholar]
  48. ParkW.H. Upregulation of thioredoxin and its reductase attenuates arsenic trioxide induced growth suppression in human pulmonary artery smooth muscle cells by reducing oxidative stress.Oncol. Rep.2020431358367 31789420
    [Google Scholar]
  49. ChenB. NelinV.E. LocyM.L. JinY. TippleT.E. Thioredoxin-1 mediates hypoxia-induced pulmonary artery smooth muscle cell proliferation.Am. J. Physiol. Lung Cell. Mol. Physiol.20133055L389L39510.1152/ajplung.00432.2012 23812635
    [Google Scholar]
  50. MochizukiM. KwonY.W. YodoiJ. MasutaniH. Thioredoxin regulates cell cycle via the ERK1/2-cyclin D1 pathway.Antioxid. Redox Signal.200911122957297110.1089/ars.2009.2623 19622016
    [Google Scholar]
  51. El FekyS. MegahedM. Abd El MoneimN. ZaherE. KhamisS. AliL. Cytotoxic, chemosensitizing and radiosensitizing effects of curcumin based on thioredoxin system inhibition in breast cancer cells: 2D vs. 3D cell culture system.Exp. Ther. Med.202121550610.3892/etm.2021.9937 33791015
    [Google Scholar]
  52. WeiX. ZengY. MengF. Calycosin-7-glucoside promotes mitochondria-mediated apoptosis in hepatocellular carcinoma by targeting thioredoxin 1 to regulate oxidative stress.Chem. Biol. Interact.202337411041110.1016/j.cbi.2023.110411 36812960
    [Google Scholar]
  53. JabbarS. MathewsP. WangX. Thioredoxin-1 regulates self-renewal and differentiation of murine hematopoietic stem cells through p53 tumor suppressor.Exp. Hematol. Oncol.20221118310.1186/s40164‑022‑00329‑3 36316713
    [Google Scholar]
  54. LiuX. JannJ. XavierC. WuH. Glutaredoxin 1 (Grx1) protects human retinal pigment epithelial cells from oxidative damage by preventing AKT glutathionylation.Invest. Ophthalmol. Vis. Sci.20155652821283210.1167/iovs.14‑15876 25788646
    [Google Scholar]
  55. YangF. YiM. LiuY. WangQ. HuY. DengH. Glutaredoxin-1 silencing induces cell senescence via p53/p21/p16 signaling axis.J. Proteome Res.20181731091110010.1021/acs.jproteome.7b00761 29356545
    [Google Scholar]
  56. HanschmannE.M. WilmsC. FalkL. Cytosolic glutaredoxin 1 is upregulated in AMD and controls retinal pigment epithelial cells proliferation via β-catenin.Biochem. Biophys. Res. Commun.2022618242910.1016/j.bbrc.2022.06.030 35714567
    [Google Scholar]
  57. PeñaC.A.P. GonzálezR. López-GruesoM.J. Antonio BárcenaJ. Redox regulation of metabolic and signaling pathways by thioredoxin and glutaredoxin in nitric oxide treated hepatoblastoma cells.Redox Biol.2015541810.1016/j.redox.2015.09.025 28162284
    [Google Scholar]
  58. FanQ. LiD. ZhaoZ. JiangY. LuY. Protective effect of Glutaredoxin 1 against oxidative stress in lens epithelial cells of age-related nuclear cataracts.Mol. Vis.2022287082 35693421
    [Google Scholar]
  59. QiuZ. LiX. DuanC. LiR. HanL. Glutaredoxin 1 protects neurons from oxygen‐glucose deprivation/reoxygenation (OGD/R)-induced apoptosis and oxidative stress via the modulation of GSK-3β/Nrf2 signaling.J. Bioenerg. Biomembr.202153436937910.1007/s10863‑021‑09898‑0 33956252
    [Google Scholar]
  60. LipińskiP. DrapierJ.C. OliveiraL. RetmańskaH. SochanowiczB. KruszewskiM. Intracellular iron status as a hallmark of mammalian cell susceptibility to oxidative stress: A study of L5178Y mouse lymphoma cell lines differentially sensitive to H2O2.Blood20009592960296610.1182/blood.V95.9.2960.009k13_2960_2966 10779446
    [Google Scholar]
  61. ChevionM. A site-specific mechanism for free radical induced biological damage: The essential role of redox-active transition metals.Free Radic. Biol. Med.198851273710.1016/0891‑5849(88)90059‑7 3075945
    [Google Scholar]
  62. ShelarS.B. KaminskaK.K. ReddyS.A. Thioredoxin-dependent regulation of AIF-mediated DNA damage.Free Radic. Biol. Med.20158712513610.1016/j.freeradbiomed.2015.06.029 26119781
    [Google Scholar]
  63. OberackerT. FritzP. SchanzM. AlscherM.D. KettelerM. SchrickerS. Enhanced Oxidative DNA-Damage in Peritoneal Dialysis Patients via the TXNIP/TRX Axis.Antioxidants2022116112410.3390/antiox11061124 35740021
    [Google Scholar]
  64. SonY. CheongY.K. KimN.H. ChungH.T. KangD.G. PaeH.O. Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate MAPK Pathways?J. Signal Transduct.201120111610.1155/2011/792639 21637379
    [Google Scholar]
  65. RamanM. ChenW. CobbM.H. Differential regulation and properties of MAPKs.Oncogene200726223100311210.1038/sj.onc.1210392 17496909
    [Google Scholar]
  66. MaY.H. SuN. ChaoX.D. Thioredoxin-1 attenuates post-ischemic neuronal apoptosis via reducing oxidative/nitrative stress.Neurochem. Int.201260547548310.1016/j.neuint.2012.01.029 22330043
    [Google Scholar]
  67. YangH. LiL. JiaoY. Thioredoxin-1 mediates neuroprotection of Schisanhenol against MPP+-induced apoptosis via suppression of ASK1-P38-NF-κB pathway in SH-SY5Y cells.Sci. Rep.20211112160410.1038/s41598‑021‑01000‑3 34732784
    [Google Scholar]
  68. PanD. LiW. MiaoH. LW-214, a newly synthesized flavonoid, induces intrinsic apoptosis pathway by down-regulating Trx-1 in MCF-7 human breast cells.Biochem. Pharmacol.201487459861010.1016/j.bcp.2013.12.010 24374359
    [Google Scholar]
  69. JinR. GaoY. ZhangS. Trx1/TrxR1 system regulates post‐selected DP thymocytes survival by modulating ASK1‐JNK/p38 MAPK activities.Immunol. Cell Biol.201593874475210.1038/icb.2015.36 25753394
    [Google Scholar]
  70. ZengX.S. JiaJ.J. KwonY. WangS.D. BaiJ. The role of thioredoxin-1 in suppression of endoplasmic reticulum stress in Parkinson disease.Free Radic. Biol. Med.201467101810.1016/j.freeradbiomed.2013.10.013 24140863
    [Google Scholar]
  71. Cohen-KutnerM. KhomskyL. TrusM. Thioredoxin-mimetic peptides (TXM) reverse auranofin induced apoptosis and restore insulin secretion in insulinoma cells.Biochem. Pharmacol.201385797799010.1016/j.bcp.2013.01.003 23327993
    [Google Scholar]
  72. Cohen-KutnerM. KhomskyL. TrusM. Thioredoxin-mimetic peptide CB3 lowers MAPKinase activity in the Zucker rat brain.Redox Biol.2014244745610.1016/j.redox.2013.12.018 24624334
    [Google Scholar]
  73. WuX. LiL. ZhangL. Inhibition of thioredoxin-1 with siRNA exacerbates apoptosis by activating the ASK1-JNK/p38 pathway in brain of a stroke model rats.Brain Res.20151599203110.1016/j.brainres.2014.12.033 25541364
    [Google Scholar]
  74. HuhK.H. ChoY. KimB.S. The role of thioredoxin 1 in the mycophenolic acid-induced apoptosis of insulin-producing cells.Cell Death Dis.201347e72110.1038/cddis.2013.247 23846223
    [Google Scholar]
  75. RenX. MaH. QiuY. The downregulation of thioredoxin accelerated Neuro2a cell apoptosis induced by advanced glycation end product via activating several pathways.Neurochem. Int.20158712813510.1016/j.neuint.2015.06.009 26142569
    [Google Scholar]
  76. SongJ.J. RheeJ.G. SuntharalingamM. WalshS.A. SpitzD.R. LeeY.J. Role of glutaredoxin in metabolic oxidative stress. Glutaredoxin as a sensor of oxidative stress mediated by H2O2.J. Biol. Chem.200227748465664657510.1074/jbc.M206826200 12244106
    [Google Scholar]
  77. LiS. SunY. QiX. Protective effect and mechanism of glutaredoxin 1 on coronary arteries endothelial cells damage induced by high glucose.Biomed. Mater. Eng.20142463897390310.3233/BME‑141221 25227108
    [Google Scholar]
  78. LiuX. XavierC. JannJ. WuH. Salvianolic acid B (Sal B) protects retinal pigment epithelial cells from oxidative stress-induced cell death by activating glutaredoxin 1 (Grx1).Int. J. Mol. Sci.20161711183510.3390/ijms17111835 27827892
    [Google Scholar]
  79. LekliI. MukherjeeS. RayD. Functional recovery of diabetic mouse hearts by glutaredoxin-1 gene therapy: Role of Akt-FoxO-signaling network.Gene Ther.201017447848510.1038/gt.2010.9 20182516
    [Google Scholar]
  80. ChoiY.J. KimD.W. ShinM.J. PEP-1-GLRX1 reduces dopaminergic neuronal cell loss by modulating MAPK and apoptosis signaling in Parkinson’s disease.Molecules20212611332910.3390/molecules26113329 34206041
    [Google Scholar]
  81. GalloglyM.M. SheltonM.D. QanungoS. Glutaredoxin regulates apoptosis in cardiomyocytes via NFkappaB targets Bcl-2 and Bcl-xL: Implications for cardiac aging.Antioxid. Redox Signal.201012121339135310.1089/ars.2009.2791 19938943
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240271103231127072635
Loading
/content/journals/cmm/10.2174/0115665240271103231127072635
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): glutaredoxin; hydrogen peroxide; JNK; MAPKs; redox signaling; Thioredoxin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test