Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Non-alcoholic fatty liver disease is a globally prevalent disorder that can rapidly progress if not detected early. Currently, no accepted markers exist for early diagnosis and prognosis of NAFLD. This review describes derangement in major metabolic pathways of lipid, carbohydrate, and amino acids in NAFLD. It suggests that measuring levels of thrombospondin, TyG index, asymmetric dimethylarginine, LAL-A, GLP-1, FGF-21, and GSG index are potential markers for early diagnosis of NAFLD. A single marker may not indicate early NAFLD, and further large-scale studies on correlating levels of Thrombospondin-2, triglyceride-glucose index, and FGF-21 with NAFLD are warranted.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240269082240213115711
2025-03-01
2025-04-22
Loading full text...

Full text loading...

References

  1. ChenL.J. LinX.X. GuoJ. Lrp6 genotype affects individual susceptibility to nonalcoholic fatty liver disease and silibinin therapeutic response via Wnt/β-catenin-Cyp2e1 Signaling.Int. J. Biol. Sci.202117143936395310.7150/ijbs.63732 34671210
    [Google Scholar]
  2. DusejaA. SinghS.P. SaraswatV.A. Non-alcoholic fatty liver disease and metabolic syndrome-position paper of the indian national association for the study of the liver, endocrine society of india, indian college of cardiology and indian society of gastroenterology.J. Clin. Exp. Hepatol.201551516810.1016/j.jceh.2015.02.006 25941433
    [Google Scholar]
  3. AmorA.J. PereaV. Dyslipidemia in nonalcoholic fatty liver disease.Curr. Opin. Endocrinol. Diabetes Obes.201926210310810.1097/MED.0000000000000464 30694825
    [Google Scholar]
  4. NikiK. DimitriP.M. Non-alcoholic fatty liver disease and dyslipidemia: An update.Metabolism201665811091123
    [Google Scholar]
  5. ParlatiL. RégnierM. GuillouH. PosticC. New targets for NAFLD.JHEP Rep20213610034610.1016/j.jhepr.2021.100346
    [Google Scholar]
  6. PastaA. BorroP. CremoniniA.L. Effect of a common missense variant in LIPA gene on fatty liver disease and lipid phenotype: New perspectives from a single‐center observational study.Pharmacol. Res. Perspect.202195e0082010.1002/prp2.820 34476902
    [Google Scholar]
  7. ZhangY. HeH. ZengY.P. Lipoprotein A, combined with alanine aminotransferase and aspartate aminotransferase, contributes to predicting the occurrence of NASH: A cross-sectional study.Lipids Health Dis.202019113410.1186/s12944‑020‑01310‑x 32527258
    [Google Scholar]
  8. MeroniM. LongoM. LombardiR. Low lipoprotein(a) levels predict hepatic fibrosis in patients with nonalcoholic fatty liver disease.Hepatol. Commun.20226353554910.1002/hep4.1830 34677008
    [Google Scholar]
  9. ChoeY.G. JinW. ChoY.K. Apolipoprotein B/AI ratio is independently associated with non‐alcoholic fatty liver disease in nondiabetic subjects.J. Gastroenterol. Hepatol.201328467868310.1111/jgh.12077 23215811
    [Google Scholar]
  10. LimJ.S. Mietus-SnyderM. ValenteA. SchwarzJ.M. LustigR.H. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome.Nat. Rev. Gastroenterol. Hepatol.20107525126410.1038/nrgastro.2010.41 20368739
    [Google Scholar]
  11. JensenT. AbdelmalekM.F. SullivanS. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease.J. Hepatol.20186851063107510.1016/j.jhep.2018.01.019 29408694
    [Google Scholar]
  12. Grau-BovéX. Ruiz-TrilloI. Rodriguez-PascualF. Origin and evolution of lysyl oxidases.Sci. Rep.2015511056810.1038/srep10568 26024311
    [Google Scholar]
  13. Insulin resistance promotes Lysyl Oxidase Like 2 induction and fibrosis accumulation in non-alcoholic fatty liver disease — Italian Ministry of Health.Available from: https://moh-it.pure.elsevier.com/en/publications/insulin-resistance-promotes-lysyl-oxidase-like-2-induction-and-fi-2(Cited 2022 Jun 16)
  14. NaokiI. Zhen-WeiP. Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal.Gut201766916971708
    [Google Scholar]
  15. WilliamsonK ChapmanR New therapeutic strategies for primary sclerosing cholangitis.Semin Liver Dis20163610051410.1055/s‑0035‑157127426870928
    [Google Scholar]
  16. TuckerB. LiH. LongX. RyeK.A. OngK.L. Fibroblast growth factor 21 in non-alcoholic fatty liver disease.Metabolism201910115399410.1016/j.metabol.2019.153994 31672443
    [Google Scholar]
  17. SookoianS. CastañoG.O. ScianR. Serum aminotransferases in nonalcoholic fatty liver disease are a signature of liver metabolic perturbations at the amino acid and Krebs cycle level.Am. J. Clin. Nutr.2016103242243410.3945/ajcn.115.118695 26791191
    [Google Scholar]
  18. LakeA.D. NovakP. ShipkovaP. Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease.Amino Acids201547360361510.1007/s00726‑014‑1894‑9 25534430
    [Google Scholar]
  19. NolanC.J. PrentkiM. Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: Time for a conceptual framework shift.Diab. Vasc. Dis. Res.201916211812710.1177/1479164119827611 30770030
    [Google Scholar]
  20. TilgH. AdolphT.E. DudekM. KnolleP. Non-alcoholic fatty liver disease: The interplay between metabolism, microbes and immunity.Nat. Metab.20213121596160710.1038/s42255‑021‑00501‑9 34931080
    [Google Scholar]
  21. LiT. GengL. ChenX. MiskowiecM. LiX. DongB. Branched-chain amino acids alleviate nonalcoholic steatohepatitis in rats.Appl. Physiol. Nutr. Metab.201338883684310.1139/apnm‑2012‑0496 23855271
    [Google Scholar]
  22. RaS.G. MiyazakiT. KojimaR. Effect of BCAA supplement timing on exercise-induced muscle soreness and damage: a pilot placebo-controlled double-blind study.J. Sports Med. Phys. Fitness201858111582159110.23736/S0022‑4707.17.07638‑1 28944645
    [Google Scholar]
  23. ZarfeshaniA. NgoS. SheppardA.M. Leucine alters hepatic glucose/lipid homeostasis via the myostatin-AMP-activated protein kinase pathway - potential implications for nonalcoholic fatty liver disease.Clin. Epigenetics2014612710.1186/1868‑7083‑6‑27 25859286
    [Google Scholar]
  24. CelinskiK. KonturekP.C. SlomkaM. Effects of treatment with melatonin and tryptophan on liver enzymes, parameters of fat metabolism and plasma levels of cytokines in patients with non-alcoholic fatty liver disease--14 months follow up.J Pol Physiol Soc20146517582 24622832
    [Google Scholar]
  25. ChenY. LiC. LiuL. Serum metabonomics of NAFLD plus T2DM based on liquid chromatography–mass spectrometry.Clin. Biochem.20164913-1496296610.1016/j.clinbiochem.2016.05.016 27211699
    [Google Scholar]
  26. JinR. BantonS. TranV.T. Amino acid metabolism is altered in adolescents with nonalcoholic fatty liver disease-An untargeted, high resolution metabolomics study.J. Pediatr.20161721419.e510.1016/j.jpeds.2016.01.026 26858195
    [Google Scholar]
  27. GagginiM. CarliF. RossoC. Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance.Hepatology201867114515810.1002/hep.29465 28802074
    [Google Scholar]
  28. StojanovićM. TodorovićD. ŠćepanovićL. Subchronic methionine load induces oxidative stress and provokes biochemical and histological changes in the rat liver tissue.Mol. Cell. Biochem.20184481-2435010.1007/s11010‑018‑3311‑2 29423685
    [Google Scholar]
  29. DaiH. WangW. TangX. Association between homocysteine and non-alcoholic fatty liver disease in Chinese adults: A cross-sectional study.Nutr. J.201615110210.1186/s12937‑016‑0221‑6 27955646
    [Google Scholar]
  30. PacanaT. Dysregulated hepatic methionine metabolism drives homocysteine elevation in diet-induced nonalcoholic fatty liver disease.PLoS ONE2015108e0136822
    [Google Scholar]
  31. de CarvalhoS.C.R. MunizM.T.C. SiqueiraM.D.V. Plasmatic higher levels of homocysteine in Non-alcoholic fatty liver disease (NAFLD).Nutr. J.20131213710.1186/1475‑2891‑12‑37 23547829
    [Google Scholar]
  32. Abu-SerieM.M. El-GamalB.A. El-KershM.A. El-SaadaniM.A. Investigation into the antioxidant role of arginine in the treatment and the protection for intralipid-induced non-alcoholic steatohepatitis.Lipids Health Dis.201514112810.1186/s12944‑015‑0124‑0 26463841
    [Google Scholar]
  33. TeomanD. Elevated asymmetric dimethylarginine in plasma: An early marker for endothelial dysfunction in non-alcoholic fatty liver disease?Diabetes Res. Clin. Pract.20129614752
    [Google Scholar]
  34. VoloshinI. Hahn-ObercygerM. AnaviS. TiroshO. L-arginine conjugates of bile acids-a possible treatment for non-alcoholic fatty liver disease.Lipids Health Dis.20141316910.1186/1476‑511X‑13‑69 24750587
    [Google Scholar]
  35. NagaC. The diagnosis and management of non-alcoholic fatty liver disease: Practice guideline by the american association for the study of liver diseases, american college of gastroenterology, and the american gastroenterological association.Hepatology201255620053
    [Google Scholar]
  36. ScottiM.M. SwansonM.S. RNA mis-splicing in disease.Nat. Rev. Genet.2016171193210.1038/nrg.2015.3 26593421
    [Google Scholar]
  37. BadmanM.K. KoesterA. FlierJ.S. KharitonenkovA. Maratos-FlierE. Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis.Endocrinology2009150114931494010.1210/en.2009‑0532 19819944
    [Google Scholar]
  38. del Río-MorenoM. Alors-PérezE. González-RubioS. Dysregulation of the splicing machinery is associated to the development of nonalcoholic fatty liver disease.J. Clin. Endocrinol. Metab.201910483389340210.1210/jc.2019‑00021 30901032
    [Google Scholar]
  39. DjebaliS. DavisC.A. MerkelA. Landscape of transcription in human cells.Nature2012489741410110810.1038/nature11233 22955620
    [Google Scholar]
  40. HonC.C. RamilowskiJ.A. HarshbargerJ. An atlas of human long non-coding RNAs with accurate 5′ ends.Nature2017543764419920410.1038/nature21374 28241135
    [Google Scholar]
  41. WuG. LiH. FangQ. Complementary role of fibroblast growth factor 21 and cytokeratin 18 in monitoring the different stages of nonalcoholic fatty liver disease.Sci. Rep.201771509510.1038/s41598‑017‑05257‑5 28698650
    [Google Scholar]
  42. YanH. XiaM. ChangX. Circulating fibroblast growth factor 21 levels are closely associated with hepatic fat content: A cross-sectional study.PLoS One201169e2489510.1371/journal.pone.0024895 21949781
    [Google Scholar]
  43. QianG. MorralN. Role of non-coding RNAs on liver metabolism and NAFLD pathogenesis.Hum. Mol. Genet.202231R1R4R2110.1093/hmg/ddac088 35417923
    [Google Scholar]
  44. LongJ.K. DaiW. ZhengY.W. ZhaoS.P. miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease.Mol. Med.20192512610.1186/s10020‑019‑0085‑2 31195981
    [Google Scholar]
  45. WangH. CaoY. ShuL. Long non‐coding RNA (lncRNA) H19 induces hepatic steatosis through activating MLXIPL and mTORC1 networks in hepatocytes.J. Cell. Mol. Med.20202421399141210.1111/jcmm.14818 31809000
    [Google Scholar]
  46. HochreuterM.Y. DallM. TreebakJ.T. BarrèsR. MicroRNAs in non-alcoholic fatty liver disease: Progress and perspectives.Mol. Metab.20226510158110.1016/j.molmet.2022.101581 36028120
    [Google Scholar]
  47. ElménJ. LindowM. SchützS. LNA-mediated microRNA silencing in non-human primates.Nature2008452718989689910.1038/nature06783 18368051
    [Google Scholar]
  48. ShiX. SunM. LiuH. YaoY. SongY. Long non-coding RNAs: A new frontier in the study of human diseases.Cancer Lett.2013339215916610.1016/j.canlet.2013.06.013 23791884
    [Google Scholar]
  49. ZhangH. NiuQ. LiangK. LiX. JiangJ. BianC. Effect of LncPVT1/miR-20a-5p on lipid metabolism and insulin resistance in NAFLD.Diabetes Metab. Syndr. Obes.2021144599460810.2147/DMSO.S338097 34848984
    [Google Scholar]
  50. BuF. WangA. ZhuY. LncRNA NEAT1: Shedding light on mechanisms and opportunities in liver diseases.Liver Int.202040112612262610.1111/liv.14629 32745314
    [Google Scholar]
  51. JinS.S. LinX.F. ZhengJ.Z. WangQ. GuanH.Q. lncRNA NEAT1 regulates fibrosis and inflammatory response induced by nonalcoholic fatty liver by regulating miR-506/GLI3.Eur. Cytokine Netw.20193039810610.1684/ecn.2019.0432 31957704
    [Google Scholar]
  52. LiuR. TangA. WangX. Inhibition of lncRNA NEAT1 suppresses the inflammatory response in IBD by modulating the intestinal epithelial barrier and by exosome-mediated polarization of macrophages.Int. J. Mol. Med.20184252903291310.3892/ijmm.2018.3829 30132508
    [Google Scholar]
  53. FeldsteinA.E. WieckowskaA. LopezA.R. LiuY.C. ZeinN.N. McCulloughA.J. Cytokeratin-18 fragment levels as noninvasive biomarkers for nonalcoholic steatohepatitis: A multicenter validation study.Hepatology20095041072107810.1002/hep.23050 19585618
    [Google Scholar]
  54. YilmazY. Biomarkers for early detection of non-alcoholic steatohepatitis: implications for drug development and clinical trials.Curr. Drug Targets201314111357136610.2174/13894501113146660215 24020975
    [Google Scholar]
  55. KawanakaM. NishinoK. NakamuraJ. Correlation between serum cytokeratin-18 and the progression or regression of non-alcoholic fatty liver disease.Ann. Hepatol.201514683784410.5604/16652681.1171767 26436355
    [Google Scholar]
  56. MikolasevicI. DomislovicV. Krznaric-ZrnicI. The accuracy of serum biomarkers in the diagnosis of steatosis, fibrosis, and inflammation in patients with nonalcoholic fatty liver disease in comparison to a liver biopsy.Medicina 202258225210.3390/medicina58020252 35208576
    [Google Scholar]
  57. KimuraT. TanakaN. FujimoriN. Serum thrombospondin 2 is a novel predictor for the severity in the patients with NAFLD.Liver Int.202141350551410.1111/liv.14776 33386676
    [Google Scholar]
  58. KozumiK. KodamaT. MuraiH. Transcriptomics identify thrombospondin‐2 as a biomarker for nash and advanced liver fibrosis.Hepatology20217452452246610.1002/hep.31995 34105780
    [Google Scholar]
  59. WuX. CheungC.K.Y. YeD. Serum thrombospondin-2 levels are closely associated with the severity of metabolic syndrome and metabolic associated fatty liver disease.J. Clin. Endocrinol. Metab.20221078e3230e324010.1210/clinem/dgac292 35532410
    [Google Scholar]
  60. RistagnoG. FumagalliF. BottazziB. Pentraxin 3 in cardiovascular disease.Front. Immunol.20191082310.3389/fimmu.2019.00823 31057548
    [Google Scholar]
  61. GurelH. GencH. CelebiG. Plasma pentraxin-3 is associated with endothelial dysfunction in non-alcoholic fatty liver disease.Eur. Rev. Med. Pharmacol. Sci.2016202043054312 27831642
    [Google Scholar]
  62. GarlandaC. BottazziB. BastoneA. MantovaniA. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility.Annu. Rev. Immunol.200523133736610.1146/annurev.immunol.23.021704.115756 15771574
    [Google Scholar]
  63. KirschR. ClarksonV. VerdonkR.C. Rodent nutritional model of steatohepatitis: Effects of endotoxin (lipopolysaccharide) and tumor necrosis factor alpha deficiency.J. Gastroenterol. Hepatol.200621117418210.1111/j.1440‑1746.2005.04220.x 16706830
    [Google Scholar]
  64. FuD. CuiH. ZhangY. Lack of ClC-2 alleviates high fat diet-induced insulin resistance and non-alcoholic fatty liver disease.Cell. Physiol. Biochem.20184562187219810.1159/000488164 29550812
    [Google Scholar]
  65. Salamah MohammadA. Dietary fructose as a risk factor for non-alcoholic fatty liver disease (NAFLD).Arch. Toxicol.201791415451563
    [Google Scholar]
  66. XuK. WuT. XiaP. ChenX. YuanY. Alternative splicing: A bridge connecting NAFLD and HCC.Trends Mol. Med.2023291085987210.1016/j.molmed.2023.07.001 37487782
    [Google Scholar]
  67. ZhaoS. JangC. LiuJ. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate.Nature2020579780058659110.1038/s41586‑020‑2101‑7 32214246
    [Google Scholar]
  68. ZhangS. DuT. ZhangJ. The triglyceride and glucose index (TyG) is an effective biomarker to identify nonalcoholic fatty liver disease.Lipids Health Dis.20171611510.1186/s12944‑017‑0409‑6 28103934
    [Google Scholar]
  69. DongiovanniP. RamettaR. MeroniM. ValentiL. The role of insulin resistance in nonalcoholic steatohepatitis and liver disease development - A potential therapeutic target?Expert Rev. Gastroenterol. Hepatol.201610222924210.1586/17474124.2016.1110018 26641143
    [Google Scholar]
  70. ReenamS.K. Modulation of insulin resistance in nonalcoholic fatty liver disease.Hepatology2019702711724
    [Google Scholar]
  71. KeiN. EijiO. The association of serum sodium and chloride levels with blood pressure and estimated glomerular filtration rate.Blood Press.20162515157
    [Google Scholar]
  72. HongL. XieZ.Z. DuY.H. Alteration of volume-regulated chloride channel during macrophage-derived foam cell formation in atherosclerosis.Atherosclerosis20112161596610.1016/j.atherosclerosis.2011.01.035 21338988
    [Google Scholar]
  73. ZhangF. ZhaoS. YanW. Branched chain amino acids cause liver injury in obese/diabetic mice by promoting adipocyte lipolysis and inhibiting hepatic autophagy.EBioMedicine20161315716710.1016/j.ebiom.2016.10.013 27843095
    [Google Scholar]
  74. KahnB.B. Adipose tissue regulates insulin sensitivity: Role of adipogenesis, de novo lipogenesis and novel lipids.J. Int. Med.20162805465475
    [Google Scholar]
  75. KumashiroN. ErionD.M. ZhangD. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease.Proc. Natl. Acad. Sci.201110839163811638510.1073/pnas.1113359108 21930939
    [Google Scholar]
  76. MarunakaY. The mechanistic links between insulin and cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel.Int. J. Mol. Sci.2017188176710.3390/ijms18081767 28805732
    [Google Scholar]
  77. WuW. BiY. TangsunY. YinW. ChenY. ZhuD. [Effects of transcription factor sterol regulatory element binding protein-1c in palmitate acid-induced L6 cells insulin resistance and its mechanism].Zhonghua Yi Xue Za Zhi2015958611615 25917039
    [Google Scholar]
  78. Herzberg-SchäferS. HeniM. StefanN. HäringH.U. FritscheA. Impairment of GLP1 ‐induced insulin secretion: Role of genetic background, insulin resistance and hyperglycaemia.Diabetes Obes. Metab.201214s3859010.1111/j.1463‑1326.2012.01648.x 22928568
    [Google Scholar]
  79. LeeC.H. SetoW.K. LuiD.T.W. Circulating thrombospondin-2 as a novel fibrosis biomarker of nonalcoholic fatty liver disease in type 2 diabetes.Diabetes Care20214492089209710.2337/dc21‑0131 34183428
    [Google Scholar]
  80. Waluś-MiarkaM. KapustaM. MiarkaP. TrojakA. Idzior-WaluśB. MałeckiM.T. Pentraxin 3 in patients with type 2 diabetes and nonalcoholic fatty liver disease: A promising treatment target for glucagon-like peptide-1 receptor agonists. Authors' reply.Pol Arch Intern Med2019129964965010.20452/pamw.14999
    [Google Scholar]
  81. TrojakA. Waluś-MiarkaM. KapustaM. Serum pentraxin 3 concentration in patients with type 2 diabetes and nonalcoholic fatty liver disease.Pol Arch Intern Med20191297-849950510.20452/pamw.14913
    [Google Scholar]
  82. FkK. Exenatide: Pharmacokinetics, clinical use, and future directions.Expert Opin. Pharmacother.2017186
    [Google Scholar]
  83. KaramfilovaV. AssyovY. NedevaI. Increased serum pentraxin 3 is associated with prediabetes and type 2 diabetes in obese patients with nonalcoholic fatty liver disease.Metab. Syndr. Relat. Disord.202220213213610.1089/met.2021.0086 34818080
    [Google Scholar]
  84. YeX. LiJ. WangH. WuJ. Pentraxin 3 and the TyG Index as Two Novel Markers to Diagnose NAFLD in Children.Dis. Markers2021202117
    [Google Scholar]
  85. HamzaR.T. ElfaramawyA.A. MahmoudN.H. Serum pentraxin 3 fragment as a noninvasive marker of nonalcoholic fatty liver disease in obese children and adolescents.Horm. Res. Paediatr.2016861112010.1159/000446566 27309736
    [Google Scholar]
  86. J-Mp. GLP-1 receptor agonists in NAFLD.Diabetes Metab2017432S2833
    [Google Scholar]
  87. De-WeiY. Liver-adipose tissue crosstalk: A key player in the pathogenesis of glucolipid metabolic disease.Chin. J. Integr. Med.2017236410414
    [Google Scholar]
  88. EmanuelliB. VienbergS.G. SmythG. Interplay between FGF21 and insulin action in the liver regulates metabolism.J. Clin. Invest.2014124251552710.1172/JCI67353 24401271
    [Google Scholar]
  89. AnguloP. KleinerD.E. Dam-LarsenS. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease.Gastroenterology20151492389397.e1010.1053/j.gastro.2015.04.043 25935633
    [Google Scholar]
  90. CsakT. BalaS. LippaiD. micro RNA -122 regulates hypoxia‐inducible factor‐1 and vimentin in hepatocytes and correlates with fibrosis in diet‐induced steatohepatitis.Liver Int.201535253254110.1111/liv.12633 25040043
    [Google Scholar]
  91. GjorgjievaM. SobolewskiC. DolickaD. Correia de SousaM. FotiM. miRNAs and NAFLD: From pathophysiology to therapy.Gut201968112065207910.1136/gutjnl‑2018‑318146 31300518
    [Google Scholar]
  92. SaarinenK. FärkkiläM. JulaA. Enhanced liver Fibrosis® test predicts liver-related outcomes in the general population.JHEP Reports20235710076510.1016/j.jhepr.2023.100765 37333973
    [Google Scholar]
  93. ValiY. LeeJ. BoursierJ. Enhanced liver fibrosis test for the non-invasive diagnosis of fibrosis in patients with NAFLD: A systematic review and meta-analysis.J. Hepatol.202073225226210.1016/j.jhep.2020.03.036 32275982
    [Google Scholar]
  94. SantoleriD. TitchenellP.M. Resolving the paradox of hepatic insulin resistance.Cell. Mol. Gastroenterol. Hepatol.20197244745610.1016/j.jcmgh.2018.10.016 30739869
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240269082240213115711
Loading
/content/journals/cmm/10.2174/0115665240269082240213115711
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test