Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Over the recent years, magnetoresistive (MR) sensors in biosensing technologies have played a pivotal role in detecting and quantifying biomarkers. The article highly focuses on the potential implications of tunneling magnetoresistance (TMR), giant magnetoresistance (GMR), anisotropic magnetoresistance (AMR), and hybrid MR sensors over conventional prototypes. The study mainly elaborates on the sensor characteristics and their implementation in the biomedical domain. The encompassing evaluation reveals the findings that the TMR sensors are remarkably stable and sensitive, whereas the GMR sensors are highly robust and inexpensive, as determined by the detection level, accuracy, sensing distance, and sensitivity. In addition, it is stated that hybrid MR sensors have lower error rates than AMR sensors utilized in the limited research area.

© 2024 The Author(s). Published by Bentham Open. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230825113444
2024-01-01
2024-11-23
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e250823220366.html?itemId=/content/journals/cmir/10.2174/1573405620666230825113444&mimeType=html&fmt=ahah

References

  1. HanT. KunduS. NagA. XuY. 3D printed sensors for biomedical applications: A review.Sensors2019197170610.3390/s1907170630974757
    [Google Scholar]
  2. MalikP.K. SharmaR. SinghR. GehlotA. SatapathyS.C. AlnumayW.S. PelusiD. GhoshU. NayakJ. Industrial Internet of Things and its applications in industry 4.0: State of the art.Comput. Commun.202116612513910.1016/j.comcom.2020.11.016
    [Google Scholar]
  3. XuY. HuX. KunduS. NagA. AfsarimaneshN. SapraS. MukhopadhyayS.C. HanT. Silicon-based sensors for biomedical applications: a review.Sensors (Basel)20191913290810.3390/s1913290831266148
    [Google Scholar]
  4. NagA. Flexible Sensors for Energy-Harvesting ApplicationsSpringerCham202215316810.1007/978‑3‑030‑99600‑0
    [Google Scholar]
  5. HuQ. NagA. ZhangL. WangK. Reduced graphene oxide-based composites for wearable strain-sensing applications.Sens. Actuators A Phys.202234511376710.1016/j.sna.2022.113767
    [Google Scholar]
  6. SheeparamattiB.G. BalavaladK.B. Fabrication and characterization of polysilicon-on-insulator (PolySOI) and a-SOI based micro piezoresistive pressure sensor for harsh environment applications.Microsyst. Technol.201925114119413310.1007/s00542‑019‑04358‑7
    [Google Scholar]
  7. AlgamiliA.S. KhirM.H.M. DennisJ.O. AhmedA.Y. AlabsiS.S. Ba HashwanS.S. JunaidM.M. A review of actuation and sensing mechanisms in MEMS-based sensor devices.Nanoscale Res. Lett.20211611610.1186/s11671‑021‑03481‑733496852
    [Google Scholar]
  8. LeeC.S. BaiB. SongQ.R. WangZ.Q. LiG.F. Open complementary split-ring resonator sensor for dropping-based liquid dielectric characterization.IEEE Sens. J.20191924118801189010.1109/JSEN.2019.2938184
    [Google Scholar]
  9. HanS.T. PengH. SunQ. VenkateshS. ChungK.S. LauS.C. ZhouY. RoyV.A.L. An overview of the development of flexible sensors.Adv. Mater.20172933170037510.1002/adma.20170037528671711
    [Google Scholar]
  10. NagA. AlahiM.E.E. FengS. MukhopadhyayS.C. IoT-based sensing system for phosphate detection using Graphite/PDMS sensors.Sens. Actuators A Phys.2019286435010.1016/j.sna.2018.12.020
    [Google Scholar]
  11. NagA. AfasrimaneshN. FengS. MukhopadhyayS.C. Strain induced graphite/PDMS sensors for biomedical applications.Sens. Actuators A Phys.201827125726910.1016/j.sna.2018.01.044
    [Google Scholar]
  12. AlahiM.E.E. Pereira-IshakN. MukhopadhyayS.C. BurkittL. An internet-of-things enabled smart sensing system for nitrate monitoring.IEEE Internet Things J.2018564409441710.1109/JIOT.2018.2809669
    [Google Scholar]
  13. AgarwalP.B. AlamB. SharmaD.S. SharmaS. MandalS. AgarwalA. Flexible NO 2 gas sensor based on single-walled carbon nanotubes on polytetrafluoroethylene substrates.Flex. Print. Electron.20183303500110.1088/2058‑8585/aacc8f
    [Google Scholar]
  14. KhanM.A. SunJ. LiB. PrzybyszA. KoselJ. Magnetic sensors-A review and recent technologies.Engineering Research Express20213202200510.1088/2631‑8695/ac0838
    [Google Scholar]
  15. Sobczak-KupiecA. VenkatesanJ. Alhathal AlAneziA. WalczykD. FarooqiA. MalinaD. HosseiniS.H. TyliszczakB. Magnetic nanomaterials and sensors for biological detection.Nanomedicine20161282459247310.1016/j.nano.2016.07.00327456162
    [Google Scholar]
  16. AlcantaraD JosephsonL Magnetic nanoparticles for application in biomedical sensing.In: InFrontiers of NanoscienceElsevier2012426928910.1016/B978‑0‑12‑415769‑9.00011‑X
    [Google Scholar]
  17. MishraRK RajakumariR Nanobiosensors for biomedical application: present and future prospects.In: Characterization and Biology of Nanomaterials for Drug Delivery2019Elsevier123
    [Google Scholar]
  18. OrtegaG RegueraE Biomedical applications of magnetite nanoparticles.In: Materials for Biomedical EngineeringElsevier201939743410.1016/B978‑0‑12‑816913‑1.00013‑1
    [Google Scholar]
  19. QuynhL.K. TuB.D. AnhC.V. DucN.H. PhungA.T. DungT.T. GiangD.T.H. Design optimization of an anisotropic magnetoresistance sensor for detection of magnetic nanoparticles.J. Electron. Mater.2019482997100410.1007/s11664‑018‑6822‑4
    [Google Scholar]
  20. CrescentiniM. RamilliR. GibiinoG.P. The X-Hall sensor: Toward integrated broadband current sensing.IEEE Trans. Instrum. Meas.20207012
    [Google Scholar]
  21. WangK. LiT. CaoB. XuH. ChengY. ZhengC. ZhengW. CuiD. Simulation and improvements of a magnetic flux sensor for application in immunomagnetic biosensing platforms.Sens. Actuators A Phys.202233311329910.1016/j.sna.2021.113299
    [Google Scholar]
  22. QiuW. ChangL. LiangY.C. LitvinovJ. GuoJ. ChenY-T. VuB. KourentziK. XuS. LeeT.R. ZuY. WillsonR.C. LitvinovD. Spin-Valve based magnetoresistive nanoparticle detector for applications in biosensing.Sens. Actuators A Phys.201726517418010.1016/j.sna.2017.08.018
    [Google Scholar]
  23. GudoshnikovS. TarasovV. LiubimovB. OdintsovV. VenediktovS. NozdrinA. Scanning magnetic microscope based on magnetoimpedance sensor for measuring of local magnetic fields.J. Magn. Magn. Mater.202051016693810.1016/j.jmmm.2020.166938
    [Google Scholar]
  24. VyasK.N. HongB. CooperJ.F.K. PalfreymanJ.J. BarnesC.H.W. Detection of magnetically labelled microcarriers for suspension-based bioassay technologies.IEEE Trans. Magn.20114761571157410.1109/TMAG.2010.2103397
    [Google Scholar]
  25. ChenY. WangX. SunZ. LiH. The application of spintronic devices in magnetic bio-sensing. In 2nd Asia Symposium on Quality Electronic Design (ASQED)2010 Aug 3IEEE23023410.1109/ASQED.2010.5548244
    [Google Scholar]
  26. TanwearA. LiangX. LiuY. VuckovicA. GhannamR. BohnertT. PazE. FreitasP.P. FerreiraR. HeidariH. Spintronic sensors based on magnetic tunnel junctions for wireless eye movement gesture control.IEEE Trans. Biomed. Circuits Syst.20201461299131010.1109/TBCAS.2020.302724232991289
    [Google Scholar]
  27. Garcia-BarnesJ. GilD. BadiellaL. Hernandez-SabateA. CarrerasF. PujadesS. MartiE. A normalized framework for the design of feature spaces assessing the left ventricular function.IEEE Trans. Med. Imaging201029373374510.1109/TMI.2009.203465320199911
    [Google Scholar]
  28. LvB. ChenY. DaiH. SuS. LinM. PKBPNN-based tracking range extending approach for TMR magnetic tracking system.IEEE Access20197631236313210.1109/ACCESS.2019.2917140
    [Google Scholar]
  29. BhaskarraoN.K. AnoopC.S. DuttaP.K. A simplified linearizer for tmr angle sensor-design and performance verification.2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)2019 May 20IEEE1610.1109/I2MTC.2019.8827176
    [Google Scholar]
  30. LiuJ. LiangJ. XuZ. ZhouZ. ZhaiJ. Development of static characteristic test system for TMR sensors.2021 4th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)2021 Nov 12IEEE50651010.1109/WCMEIM54377.2021.00109
    [Google Scholar]
  31. KhokleR.P. FrancoF. de FreitasS.C. EsselleK.P. HeimlichM.C. BokorD.J. Eddy current–tunnelling magneto-resistive sensor for micromotion detection of a tibial orthopedic implant.IEEE Sens. J.20191941285129210.1109/JSEN.2018.2881957
    [Google Scholar]
  32. ZuoS. NazarpourK. BöhnertT. Integrated pico-tesla resolution magnetoresistive sensors for miniaturized magnetomyography. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)2020 Jul 20IEEE34153419
    [Google Scholar]
  33. LeiH. WangK. JiX. CuiD. Contactless measurement of magnetic nanoparticles on lateral flow strips using tunnelling magnetoresistance (TMR) sensors in a differential configuration.Sensors20161612213010.3390/s1612213027983659
    [Google Scholar]
  34. WangC. HeH. CuiZ. CaoQ. ZouP. WangH. A novel EMT system based on TMR sensors for reconstruction of permeability distribution.Meas. Sci. Technol.2018291010400810.1088/1361‑6501/aad8ea
    [Google Scholar]
  35. WangM. TaoX. PengL. YeC. Imaging of Magnetic Nanoparticles Using Small TMR Sensor With an Excitation-Compensation Scheme.IEEE Sens. J.20202019110821108910.1109/JSEN.2020.2996741
    [Google Scholar]
  36. GuoC. ChenL. ZhangH. Current Measurement for Curved Conductor based on 3-D Coreless TMR Sensor Array.J. Phys. Conf. Ser.202118871012025
    [Google Scholar]
  37. MohamedA. SchmidM. TanwearA. HeidariH. AndersJ. A Low Noise CMOS Sensor Frontend for a TMR-based Biosensing Platform.2020 IEEE SENSORSIEEE20201410.1109/SENSORS47125.2020.9278826
    [Google Scholar]
  38. BeheraB. BoroleU.P. SivajiA. KhanJ. KumarP. AnandaC.M. BarshiliaH.C. ChowdhuryP. JadhavJ.J. Design and development of GMR based low range pressure sensor for medical ventilator application.Sens. Actuators A Phys.202132111258110.1016/j.sna.2021.112581
    [Google Scholar]
  39. VolmerM. AvramM. Micromagnetic simulations on detection of magnetic labelled biomolecules using MR sensors.J. Magn. Magn. Mater.2009321101683168510.1016/j.jmmm.2009.02.114
    [Google Scholar]
  40. ParkJ. Superparamagnetic nanoparticle quantification using a giant magnetoresistive sensor and permanent magnets.J. Magn. Magn. Mater.2015389566010.1016/j.jmmm.2015.04.049
    [Google Scholar]
  41. RifeJ.C. MillerM.M. SheehanP.E. TamanahaC.R. TondraM. WhitmanL.J. Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors.Sens. Actuators A Phys.2003107320921810.1016/S0924‑4247(03)00380‑7
    [Google Scholar]
  42. KokkinisG. CardosoS. KeplingerF. GiouroudiI. Microfluidic platform with integrated GMR sensors for quantification of cancer cells.Sens. Actuators B Chem.201724143844510.1016/j.snb.2016.09.189
    [Google Scholar]
  43. XuL. YuH. AkhrasM.S. HanS.J. OsterfeldS. WhiteR.L. PourmandN. WangS.X. Giant magnetoresistive biochip for DNA detection and HPV genotyping.Biosens. Bioelectron.20082419910310.1016/j.bios.2008.03.03018457945
    [Google Scholar]
  44. MakA.C. OsterfeldS.J. YuH. WangS.X. DavisR.W. JejelowoO.A. PourmandN. Sensitive giant magnetoresistive-based immunoassay for multiplex mycotoxin detection.Biosens. Bioelectron.20102571635163910.1016/j.bios.2009.11.02820047828
    [Google Scholar]
  45. ShoshiA. SchotterJ. SchroederP. MilneraM. ErtlP. CharwatV. PurtscherM. HeerR. EggelingM. ReissG. BruecklH. Magnetoresistive-based real-time cell phagocytosis monitoring.Biosens. Bioelectron.201236111612210.1016/j.bios.2012.04.00222560105
    [Google Scholar]
  46. WangY. WangW. YuL. TuL. FengY. KleinT. WangJ.P. Giant magnetoresistive-based biosensing probe station system for multiplex protein assays.Biosens. Bioelectron.201570616810.1016/j.bios.2015.03.01125794959
    [Google Scholar]
  47. ZhangL. HuoW. GaoY. ShiS. GaoY. Determination of affinity and kinetic constants of the biotin-streptavidin complex using microfluidic GMR biosensors.IEEE Trans. Magn.201551111426203196
    [Google Scholar]
  48. PaixaoF.C. SilvaF.M. JoseR.D. BaffaO. Magnetoresistive sensors in a new biomagnetic instrumentation for applications in gastroenterology.2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology SocietyAug 22, 2007, pp. 2948-2951.10.1109/IEMBS.2007.4352947
    [Google Scholar]
  49. MonshatH. QianJ. PangJ. ParvinS. ZhangQ. WuZ. LuM. Integration of nucleic acid amplification, detection, and melting curve analysis for rapid genotyping of antimicrobial resistance.IEEE Sens. J.20222287534754110.1109/JSEN.2022.3156378
    [Google Scholar]
  50. PaixãoF.C. CoráL.A. AméricoM.F. de OliveiraR.B. BaffaO. MirandaJ.R.A. Development of an AMR-ACB array for gastrointestinal motility studies.IEEE Trans. Biomed. Eng.201259102737274310.1109/TBME.2012.220874822996723
    [Google Scholar]
  51. PaixaoF.C. QuiniC.C. BaffaO. MirandaJ.R. A novel device with 36 channels for imaging and signal acquisition of the gastrointestinal tract based on AC biosusceptometry.2010 Annual International Conference of the IEEE Engineering in Medicine and Biology2010 Aug 31Ieee6457646010.1109/IEMBS.2010.5627341
    [Google Scholar]
  52. PaixãoF.C. de MoraesR. StelzerM. A novel biomagnetic instrumentation with four magnetoresistive sensors to evaluate gastric motility.2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society2007 Aug 22IEEE2215221810.1109/IEMBS.2007.4352764
    [Google Scholar]
  53. AramiA. ValletA. AminianK. Accurate measurement of concurrent flexion-extension and internal-external rotations in smart knee prostheses.IEEE Trans. Biomed. Eng.20136092504251010.1109/TBME.2013.225948923962985
    [Google Scholar]
  54. Jesus PratesL.D. PaixãoF.C. MoraesM.L. CoelhoR.C. SilvaR.R. GodoyC.M. Assessment of AMR-ACB system using maghemite nanoparticles in theranostic concentration.VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical EngineeringSpringerCham2019611615
    [Google Scholar]
  55. RizziG. Westergaard ØsterbergF. DufvaM. Fougt HansenM. Magnetoresistive sensor for real-time single nucleotide polymorphism genotyping.Biosens. Bioelectron.20145244545110.1016/j.bios.2013.09.02624094523
    [Google Scholar]
  56. Wirix-SpeetjensR. ReekmansG. De PalmaR. LiuC. LaureynW. BorghsG. Magnetoresistive biosensors based on active guiding of magnetic particles towards the sensing zone.Sens. Actuators B Chem.200712811410.1016/j.snb.2007.05.023
    [Google Scholar]
  57. FerrignoL. LaraccaM. MilanoF. CerroG. BellittiP. SerpelloniM. PiedrafitaO.C. Magnetic localization system for short-range positioning: A ready-to-use design tool.IEEE Trans. Instrum. Meas.2021701910.1109/TIM.2020.3035397
    [Google Scholar]
  58. OgiriY. YamanoiY. NishinoW. KatoR. TakagiT. YokoiH. Development of an upper limb neuroprosthesis to voluntarily control elbow and hand.2017 26th IEEE International Symposium on Robot and Human Interactive Communication (ROMAN)2017 Aug 28IEEE29830310.1109/ROMAN.2017.8172317
    [Google Scholar]
  59. MoatazA. SolimanA. GhanemA.M. al-ShatouriM. AtiaA. RashedE.A. Three-dimensional angiography using mobile C-arm with IMU sensor attached: Initial study. 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)20151310.1109/NSSMIC.2015.7582155
    [Google Scholar]
  60. BolusN.B. KoglerG.F. InanO.T. A novel method to assess angle sensor performance for wearable exoskeletal joint kinematics.2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)2016 Aug 16IEEE3109311210.1109/EMBC.2016.7591387
    [Google Scholar]
  61. RenC. BayinQ. FengS. FuY. MaX. GuoJ. Biomarkers detection with magnetoresistance-based sensors.Biosens. Bioelectron.202016511234010.1016/j.bios.2020.11234032729483
    [Google Scholar]
  62. WangC.W. AhmedA. HunterA. Vision analysis in detecting abnormal breathing activity in application to diagnosis of obstructive sleep apnoea.2006 International Conference of the IEEE Engineering in Medicine and Biology Society20064469447310.1109/IEMBS.2006.260648
    [Google Scholar]
  63. ElkholyA. HusseinM.E. GomaaW. DamenD. SabaE. Efficient and robust skeleton-based quality assessment and abnormality detection in human action performance.IEEE J. Biomed. Health Inform.202024128029110.1109/JBHI.2019.290432130869634
    [Google Scholar]
  64. ElkholyA. HusseinM.E. GomaaW. DamenD. SabaE. A general descriptor for detecting abnormal action performance from skeletal data.2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)201720171401140410.1109/EMBC.2017.8037095
    [Google Scholar]
  65. SrinivasH. Al-AbedA. LadouceurF. LovellN.H. SilvestriL. Modeling the Debye dielectric response in the time domain for a liquid crystal-based biopotential optrode.2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)20164857486010.1109/EMBC.2016.75918152906089
    [Google Scholar]
  66. SmetanaM. CapovaK. BehunL. PalcekP. OrsulovaT. 3D GMR sensor detection ability in nondestructive evaluation of austenitic biomaterials.2018 ELEKTRO, Mikulov, Czech Republic201815
    [Google Scholar]
  67. MurzinD. MappsD.J. LevadaK. BelyaevV. OmelyanchikA. PaninaL. RodionovaV. Ultrasensitive magnetic field sensors for biomedical applications.Sensors2020206156910.3390/s2006156932168981
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230825113444
Loading
/content/journals/cmir/10.2174/1573405620666230825113444
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test