Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Purpose

To investigate the value of multimodal diffusion weighted imaging (DWI) in preoperative evaluation of Ki-67 expression of endometrial carcinoma (EC).

Materials and Methods

Patients who had undergone pelvic DWI, intravoxel incoherent motion (IVIM), and diffusion kurtosis imaging (DKI) sequence MRI scan before surgery were retrospectively enrolled. Single index model, double index model, and DKI were used for post-processing of the DWI data, and the apparent diffusion coefficient (ADC), real diffusion coefficient (D), pseudo diffusion coefficient (D*), perfusion fraction (f), non-Gaussian mean diffusion kurtosis (MK), mean diffusion coefficient (MD) and anisotropy fraction (FA) were calculated and compared between the Ki-67 high (≥50%) and low (<50%) expression groups.

Results

Forty-two patients with a median age of 56 (range 37 - 75) years were enrolled, including 15 patients with a high Ki-67 (≥50%) expression and 27 with a low Ki-67 (<50%) expression. The MK (0.91 ± 0.12 . 0.76 ± 0.12) was significantly (P<0.05) higher while MD (0.99 ± 0.17 . 1.16 ± 0.22), D (0.55 ± 0.06 . 0.62 ± 0.08), and f (0.21 . 0.28) were significantly (P<0.05) lower in the high than in the low expression group. The combined model of MK, MD, D, and f-values had the largest area under the curve (AUC) value of 0.869 (95% CI: 0.764-0.974), sensitivity 0.733 and specificity 0.852, followed by the MK value with an AUC value 0.827 (95% CI: 0.700-0.954), sensitivity 0.733 and specificity 0.815.

Conclusions

IVIM and DKI have certain diagnostic values for preoperative evaluation of the EC Ki-67 expression, and the combined model has the highest diagnostic efficiency.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230811142710
2024-01-01
2024-11-22
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e110823219686.html?itemId=/content/journals/cmir/10.2174/1573405620666230811142710&mimeType=html&fmt=ahah

References

  1. IslamiF. WardE.M. SungH. CroninK.A. TangkaF.K.L. ShermanR.L. ZhaoJ. AndersonR.N. HenleyS.J. YabroffK.R. JemalA. BenardV.B. Annual report to the nation on the status of cancer, Part 1: National cancer statistics.J. Natl. Cancer Inst.2021113121648166910.1093/jnci/djab13134240195
    [Google Scholar]
  2. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.2165433433946
    [Google Scholar]
  3. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN Estimates of Incidence and Mortality worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  4. KitsonS. SivalingamV.N. BoltonJ. McVeyR. Nickkho-AmiryM. PowellM.E. LearyA. NijmanH.W. NoutR.A. BosseT. RenehanA.G. KitchenerH.C. EdmondsonR.J. CrosbieE.J. Ki-67 in endometrial cancer: Scoring optimization and prognostic relevance for window studies.Mod. Pathol.201730345946810.1038/modpathol.2016.20327910946
    [Google Scholar]
  5. XuQ. ChenC. LiuB. LinY. ZhengP. ZhouD. XieY. LinY. GuoC. LiuJ. LiL. Association of iRhom1 and iRhom2 expression with prognosis in patients with cervical cancer and possible signaling pathways.Oncol. Rep.2020431415431661139
    [Google Scholar]
  6. OcakB. AtalayF.Ö. SahinA.B. OzsenM. DakikiB. TüreS. MesohorliM. OdmanH.U. TanrıverdiÖ. OcakoğluG. BayrakM. OzanH. DemirözC. SaliS. OrhanS.O. DeligönülA. CubukcuE. EvrenselT. The impact of Ki-67 index, squamous differentiation and several clinicopathologic parameters on the recurrence of low and intermediate-risk endometrial cancer.Bosn. J. Basic Med. Sci.202121554955410.17305/bjbms.2020.543733714260
    [Google Scholar]
  7. Filipov PeresG. Spadoto-DiasD. Neves Bueloni-DiasF. LeiteN. EliasL. DominguesM.A. PadovaniC.R. DiasR. Immunohistochemical expression of hormone receptors, Ki-67, endoglin (CD105), claudins 3 and 4, MMP -2 and -9 in endometrial polyps and endometrial cancer type I.OncoTargets Ther.2018113949395810.2147/OTT.S16001430022838
    [Google Scholar]
  8. GarciaT.S. AppelM. RiveroR. KliemannL. WenderM.C.O. Agreement between preoperative endometrial sampling and surgical specimen findings in endometrial carcinoma.Int. J. Gynecol. Cancer201727347347810.1097/IGC.000000000000092228187097
    [Google Scholar]
  9. NougaretS. HortaM. SalaE. LakhmanY. Thomassin-NaggaraI. KidoA. MasselliG. BharwaniN. SadowskiE. ErtmerA. Otero-GarciaM. Kubik-HuchR.A. CunhaT.M. RockallA. ForstnerR. Endometrial Cancer MRI staging: Updated guidelines of the european society of urogenital radiology.Eur. Radiol.201929279280510.1007/s00330‑018‑5515‑y29995239
    [Google Scholar]
  10. MacielC. BharwaniN. Kubik-HuchR.A. ManganaroL. Otero-GarciaM. NougaretS. AltC.D. CunhaT.M. ForstnerR. MRI of female genital tract congenital anomalies: European society of urogenital radiology (ESUR) guidelines.Eur. Radiol.20203084272428310.1007/s00330‑020‑06750‑832221681
    [Google Scholar]
  11. Le BihanD. BretonE. LallemandD. GrenierP. CabanisE. Laval-JeantetM. MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders.Radiology1986161240140710.1148/radiology.161.2.37639093763909
    [Google Scholar]
  12. WangW. ZhangX. ZhuL. ChenY. DouW. ZhaoF. ZhouZ. SunZ. Prediction of prognostic factors and genotypes in patients with breast cancer using multiple mathematical models of mr diffusion imaging.Front. Oncol.20221282526410.3389/fonc.2022.82526435174093
    [Google Scholar]
  13. ChryssouE.G. ManikisG.C. IoannidisG.S. ChaniotisV. VrekoussisT. MarisT.G. MariasK. KarantanasA.H. Diffusion weighted imaging in the assessment of tumor grade in endometrial cancer based on intravoxel incoherent motion MRI.Diagnostics202212369210.3390/diagnostics1203069235328246
    [Google Scholar]
  14. MengN. FangT. FengP. HuangZ. SunJ. WangX. ShangJ. WangK. HanD. WangM. Amide proton transfer-weighted imaging and multiple models diffusion-weighted imaging facilitates preoperative risk stratification of early-stage endometrial carcinoma.J. Magn. Reson. Imaging20215441200121110.1002/jmri.2768433991377
    [Google Scholar]
  15. SattaS. DolciamiM. CelliV. Di StadioF. PerniolaG. PalaiaI. PernazzaA. Della RoccaC. RizzoS. CatalanoC. CapuaniS. ManganaroL. Quantitative diffusion and perfusion MRI in the evaluation of endometrial cancer: validation with histopathological parameters.Br. J. Radiol.20219411252021005410.1259/bjr.2021005434111974
    [Google Scholar]
  16. ZhangQ. OuyangH. YeF. ChenS. XieL. ZhaoX. YuX. Multiple mathematical models of diffusion-weighted imaging for endometrial cancer characterization: Correlation with prognosis-related risk factors.Eur. J. Radiol.202013010910210.1016/j.ejrad.2020.10910232673928
    [Google Scholar]
  17. SongJ.C. LuS.S. ZhangJ. LiuX.S. LuoC.Y. ChenT. Quantitative assessment of diffusion kurtosis imaging depicting deep myometrial invasion: A comparative analysis with diffusion-weighted imaging.Diagn. Interv. Radiol.2020262748110.5152/dir.2019.1836632071025
    [Google Scholar]
  18. YamadaI. SakamotoJ. KobayashiD. MiyasakaN. WakanaK. OshimaN. WakabayashiA. SaidaY. TateishiU. EishiY. Diffusion kurtosis imaging of endometrial carcinoma: Correlation with histopathological findings.Magn. Reson. Imaging20195733734610.1016/j.mri.2018.12.00930599199
    [Google Scholar]
  19. YueW. MengN. WangJ. LiuW. WangX. YanM. HanD. ChengJ. Comparative analysis of the value of diffusion kurtosis imaging and diffusion-weighted imaging in evaluating the histological features of endometrial cancer.Cancer Imaging2019191910.1186/s40644‑019‑0196‑630764876
    [Google Scholar]
  20. JiangJ.X. ZhaoJ.L. ZhangQ. QingJ.F. ZhangS.Q. ZhangY.M. WuX.H. Endometrial carcinoma: Diffusion-weighted imaging diagnostic accuracy and correlation with Ki-67 expression.Clin. Radiol.2018734413.e1413.e610.1016/j.crad.2017.11.01129246587
    [Google Scholar]
  21. LiY. LinC.Y. QiY.F. WangX. ChenB. ZhouH.L. RenJ. YangJ.J. XiangY. HeY.L. XueH.D. JinZ.Y. Three-dimensional turbo-spin-echo amide proton transfer-weighted and intravoxel incoherent motion MR imaging for type I endometrial carcinoma: Correlation with Ki-67 proliferation status.Magn. Reson. Imaging202178182410.1016/j.mri.2021.02.00633556484
    [Google Scholar]
  22. FuF. MengN. HuangZ. SunJ. WangX. ShangJ. FangT. FengP. WangK. HanD. WangM. Identification of histological features of endometrioid adenocarcinoma based on amide proton transfer-weighted imaging and multimodel diffusion-weighted imaging.Quant. Imaging Med. Surg.20221221311132310.21037/qims‑21‑18935111626
    [Google Scholar]
  23. MengN. WangX. SunJ. HuangZ. YangZ. ShangJ. BaiY. WeiW. HanD. HanH. WangK. ShaoF. WangM. Evaluation of amide proton transfer-weighted imaging for endometrial carcinoma histological features: A comparative study with diffusion kurtosis imaging.Eur. Radiol.202131118388839810.1007/s00330‑021‑07966‑y33884473
    [Google Scholar]
  24. YuanY. ZengD. LiuY. TaoJ. ZhangY. YangJ. LkhagvadorjT. YinZ. WangS. DWI and IVIM are predictors of Ki67 proliferation index: direct comparison of MRI images and pathological slices in a murine model of rhabdomyosarcoma.Eur. Radiol.20203031334134110.1007/s00330‑019‑06509‑w31705255
    [Google Scholar]
  25. JiangX. JiaH. ZhangZ. WeiC. WangC. DongJ. The feasibility of combining ADC value with texture analysis of T2WI, DWI and CE-T1WI to preoperatively predict the expression levels of Ki-67 and p53 of endometrial carcinoma.Front. Oncol.20221180554510.3389/fonc.2021.80554535127515
    [Google Scholar]
  26. LiuY. WangX. CuiY. JiangY. YuL. LiuM. ZhangW. ShiK. ZhangJ. ZhangC. LiC. ChenM. Comparative study of monoexponential, intravoxel incoherent motion, kurtosis, and ivim-kurtosis models for the diagnosis and aggressiveness assessment of prostate cancer.Front. Oncol.202010176310.3389/fonc.2020.0176333042822
    [Google Scholar]
  27. XiaoZ. ZhongY. TangZ. QiangJ. QianW. WangR. WangJ. WuL. TangW. ZhangZ. Standard diffusion-weighted, diffusion kurtosis and intravoxel incoherent motion MR imaging of sinonasal malignancies: correlations with Ki-67 proliferation status.Eur. Radiol.20182872923293310.1007/s00330‑017‑5286‑x29383521
    [Google Scholar]
  28. ZhangJ. SuoS. LiuG. ZhangS. ZhaoZ. XuJ. WuG. Comparison of monoexponential, biexponential, stretched-exponential, and kurtosis models of diffusion-weighted imaging in differentiation of renal solid masses.Korean J. Radiol.201920579180010.3348/kjr.2018.047430993930
    [Google Scholar]
  29. PangY. TurkbeyB. BernardoM. KrueckerJ. KadouryS. MerinoM.J. WoodB.J. PintoP.A. ChoykeP.L. Intravoxel incoherent motion MR imaging for prostate cancer: An evaluation of perfusion fraction and diffusion coefficient derived from different b -value combinations.Magn. Reson. Med.201369255356210.1002/mrm.2427722488794
    [Google Scholar]
  30. QiX.X. ShiD.F. RenS.X. ZhangS.Y. LiL. LiQ.C. GuanL.M. Histogram analysis of diffusion kurtosis imaging derived maps may distinguish between low and high grade gliomas before surgery.Eur. Radiol.20182841748175510.1007/s00330‑017‑5108‑129143940
    [Google Scholar]
  31. ZhangQ. YuX. OuyangH. ZhangJ. ChenS. XieL. ZhaoX. Whole-tumor texture model based on diffusion kurtosis imaging for assessing cervical cancer: A preliminary study.Eur. Radiol.20213185576558510.1007/s00330‑020‑07612‑z33464399
    [Google Scholar]
  32. YinJ. SunH. WangZ. NiH. ShenW. SunP.Z. Diffusion kurtosis imaging of acute infarction: Comparison with routine diffusion and follow-up MR imaging.Radiology2018287265165710.1148/radiol.201717055329558293
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230811142710
Loading
/content/journals/cmir/10.2174/1573405620666230811142710
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test