Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is considered a promising method in lung lesion assessment.

Methods

Sixty-four patients with single pulmonary lesions (SPLs) received DCE-MRI at 3.0 T. Of them, 49 cases were diagnosed with lung cancer, and 15 with benign pulmonary nodules (8 inflammatory nodules, 5 tuberculosis, and 2 abscesses). SPLs were quantitatively analyzed to determine the pulmonary lesions-related perfusion parameters, including reflux constant (Kep), volume transfer constant (K), the maximum slope of increase (MaxSlope), extravascular extracellular space volume fraction (Ve), apparent diffusion coefficient (ADC), the initial area in the signal intensity-time curve (IAUGC), and contrast-enhancement ratio (CER). In addition, a Student’s t-test was conducted to calculate statistical significance regarding the quantitatively analyzed perfusion parameters in benign SPLs compared to malignant SPLs. The area under (AUC) the receiver operating characteristic (ROC) curve was studied to investigate the performance of perfusion parameters in diagnosing lung cancer.

Results

Values of K, Kep, Ve, MaxSlope, and IAUGC increased within malignant nodules relative to benign nodules (K: 0.21 ±0.08 . 0.73 ±0.40, P = 0.0001; Kep: 1.21 ±0.66 . 1.83 ±0.90, P = 0.0163; Ve: 0.24 ±0.08 . 0.47 ±0.18, P < 0.0001; MaxSlope: 0.09 ±0.14 . 0.28 ±0.29, P = 0.0166; IAUGC: 0.18 ±0.09 . 0.55 ±0.34, P = 0.0001). Meanwhile, malignant nodules presented higher ADC than benign nodules (0.0016 ±0.0006 . 0.0012 ±0.0003, P = 0.0019). K and IAUGC showed the best diagnostic performance with AUCs [1.0, 95%CI (0.99–1.0); 0.93, 95%CI(0.85–1.0), respectively].

Conclusion

Malignant pulmonary lesions had higher values of Ktrans, Ve, Kep, MaxSlope, and IAUGC compared to benign pulmonary lesions. Overall, perfusion parameters of DCE-MRI facilitate discrimination between benign from malignant pulmonary nodules.

© 2024 The Author(s). Published by Bentham Open. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230727111222
2024-01-01
2024-11-22
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e270723219206.html?itemId=/content/journals/cmir/10.2174/1573405620666230727111222&mimeType=html&fmt=ahah

References

  1. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2019.CA Cancer J. Clin.201969173410.3322/caac.2155130620402
    [Google Scholar]
  2. YangD. LiuY. BaiC. WangX. PowellC.A. Epidemiology of lung cancer and lung cancer screening programs in China and the United States.Cancer Lett.2020468828710.1016/j.canlet.2019.10.00931600530
    [Google Scholar]
  3. CaoM. ChenW. Epidemiology of lung cancer in China.Thorac. Cancer20191013710.1111/1759‑7714.1291630485694
    [Google Scholar]
  4. GroheuxD. QuereG. BlancE. LemarignierC. VercellinoL. de Margerie-MellonC. MerletP. QuerellouS. FDG PET-CT for solitary pulmonary nodule and lung cancer: Literature review.Diagn. Interv. Imaging201697101003101710.1016/j.diii.2016.06.02027567555
    [Google Scholar]
  5. O’DowdE.L. BaldwinD.R. Lung cancer screening—low dose CT for lung cancer screening: recent trial results and next steps.Br. J. Radiol.20189110902017046010.1259/bjr.2017046028749712
    [Google Scholar]
  6. ZhouS.C. WangY.J. AiT. HuangL. ZhuT.T. ZhuW.Z. XiaL.M. Diagnosis of solitary pulmonary lesions with intravoxel incoherent motion diffusion-weighted MRI and semi-quantitative dynamic contrast-enhanced MRI.Clin. Radiol.2019745409.e7409.e1610.1016/j.crad.2018.12.02230795843
    [Google Scholar]
  7. JinK. WangK. ZhangH. PanY. CaoD. WangM. ChenJ. WuD. ChenB. XieX. Solitary pulmonary lesion in patients with history of malignancy: Primary lung cancer or metastatic cancer?Ann. Surg. Oncol.20182551237124410.1245/s10434‑018‑6360‑629417404
    [Google Scholar]
  8. SeraiS.D. RappJ.B. StatesL.J. AndronikouS. CietP. LeeE.Y. Pediatric lung MRI: Currently available and emerging techniques.AJR Am. J. Roentgenol.2021216378179010.2214/AJR.20.2310433474982
    [Google Scholar]
  9. AllenB.D. SchieblerM.L. SommerG. KauczorH.U. BiedererJ. KruserT.J. CarrJ.C. HazenG. Cost-effectiveness of lung mri in lung cancer screening.Eur. Radiol.20203031738174610.1007/s00330‑019‑06453‑931748855
    [Google Scholar]
  10. ChenG.X. WangM.H. ZhengT. TangG.C. HanF.G. TuG.J. Diffusion: Weighted magnetic resonance imaging for the detection of metastatic lymph nodes in patients with lung cancer: A meta-analysis.Mol. Clin. Oncol.20176334435410.3892/mco.2017.115328451411
    [Google Scholar]
  11. LiC.H. ChenF.H. SchellingerhoutD. LinY.S. HongJ.H. LiuH.L. Flow versus permeability weighting in estimating the forward volumetric transfer constant (Ktrans) obtained by DCE-MRI with contrast agents of differing molecular sizes.Magn. Reson. Imaging20173610511110.1016/j.mri.2016.10.02727989901
    [Google Scholar]
  12. WangG.C. ChenY.J. FengX.R. FengP.Y. Diagnostic value of HR‐MRI and DCE‐MRI in unilateral middle cerebral artery inflammatory stenosis.Brain Behav.2020109e0173210.1002/brb3.173232767660
    [Google Scholar]
  13. KangS.R. KimH.W. KimH.S. Evaluating the relationship between dynamic contrast‐enhanced mri (dce-mri) parameters and pathological characteristics in breast cancer.J. Magn. Reson. Imaging20205251360137310.1002/jmri.2724132524658
    [Google Scholar]
  14. KumarN SharmaM AggarwalN SharmaS SarkarM SinghB SharmaN Role of various DW MRI and DCE MRI parameters as predictors of malignancy in solid pulmonary lesions.Canadian. Ass. Radiol. J.202172352553210.1177/0846537120914894
    [Google Scholar]
  15. ChengZ. WuZ. ShiG. YiZ. XieM. ZengW. SongC. ZhengC. ShenJ. Discrimination between benign and malignant breast lesions using volumetric quantitative dynamic contrast-enhanced MR imaging.Eur. Radiol.201828398299110.1007/s00330‑017‑5050‑228929243
    [Google Scholar]
  16. WangH. SuZ. XuX. HuangN. SunZ. WangY. LiL. GuoA. ChenX. MaX. MaL. YeH. Dynamic contrast-enhanced mri in renal tumors: Common subtype differentiation using pharmacokinetics.Sci. Rep.201771311710.1038/s41598‑017‑03376‑728596583
    [Google Scholar]
  17. ChenL. LiuD. ZhangJ. XieB. ZhouX. GrimmR. HuangX. WangJ. FengL. Free-breathing dynamic contrast-enhanced MRI for assessment of pulmonary lesions using golden-angle radial sparse parallel imaging.J. Magn. Reson. Imaging201848245946810.1002/jmri.2597729437281
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230727111222
Loading
/content/journals/cmir/10.2174/1573405620666230727111222
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test