Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background

Cerebral microbleeds (CMBs) are commonly present in patients with hypertension, producing iron-containing metabolites. A small amount of regional iron deposition is hardly discernible on conventional magnetic resonance imaging (MRI). Three-dimensional enhanced susceptibility-weighted angiography (ESWAN) provides tissue images with high spatial resolution and signal-noise ratio, and has been widely used to measure brain iron deposition in neurodegenerative diseases and intracranial hemorrhage.

Objective

The study aimed to demonstrate iron deposition in the brain of hypertensive patients using ESWAN.

Methods

Twenty-seven hypertension patients, with or without CMBs, and 16 matched healthy controls (HCs) were enrolled. From the post-processed ESWAN images, phase and magnitude values of the regions of interest (ROIs) were calculated. Two-sample test and one-way variance analysis were applied to compare groups. The relationship between ESWAN parameters and clinical variables was assessed using Pearson’s correlation coefficient.

Results

Compared to HCs, the phase value of the hippocampus, head of caudate nucleus (HCN), and substantia nigra (SN) was decreased in hypertension with the CMBs subgroup, while that of HCN and SN was decreased in hypertension without CMBs subgroup. Similarly, the magnitude value of the hippocampus, HCN, thalamus red nucleus, and SN was significantly lower in the hypertension group than HCs. In addition, the phase and magnitude values showed a correlation with clinical variables, including disease duration and blood pressure.

Conclusion

Deep grey matter nuclei displayed greater iron content in hypertension patients. Iron deposition may precede the appearance of CMBs on MRI, serving as a potential marker of microvascular damage.

© 2024 The Author(s). Published by Bentham Open. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230627112146
2024-01-01
2025-01-18
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e270623218305.html?itemId=/content/journals/cmir/10.2174/1573405620666230627112146&mimeType=html&fmt=ahah

References

  1. PantoniL. Cerebral small vessel disease: From pathogenesis and clinical characteristics to therapeutic challenges.Lancet Neurol.20109768970110.1016/S1474‑4422(10)70104‑620610345
    [Google Scholar]
  2. LiangC. WangJ. FengM. ZhangN. GuoL. White matter changes, duration of hypertension, and age are associated with cerebral microbleeds in patients with different stages of hypertension.Quant. Imaging Med. Surg.202212111913010.21037/qims‑21‑2834993065
    [Google Scholar]
  3. HouY. LiY. YangS. QinW. YangL. HuW. Gait impairment and upper extremity disturbance are associated with total magnetic resonance imaging cerebral small vessel disease burden.Front. Aging Neurosci.20211364084410.3389/fnagi.2021.64084434054501
    [Google Scholar]
  4. YouP. LiX. WangZ. WangH. DongB. LiQ. Characterization of brain iron deposition pattern and its association with genetic risk factor in alzheimer’s disease using susceptibility-weighted imaging.Front. Hum. Neurosci.20211565438110.3389/fnhum.2021.65438134163341
    [Google Scholar]
  5. DuS. SahS.K. ZengC. WangJ. LiuY. XiongH. LiY. Iron deposition in the gray matter in patients with relapse-remitting multiple sclerosis: A longitudinal study using three-dimensional (3D)-enhanced T2*-weighted angiography (ESWAN).Eur. J. Radiol.20158471325133210.1016/j.ejrad.2015.04.01325959392
    [Google Scholar]
  6. HaackeE.M. MittalS. WuZ. NeelavalliJ. ChengY.C.N. Susceptibility-weighted imaging: Technical aspects and clinical applications, part 1.AJNR Am. J. Neuroradiol.2009301193010.3174/ajnr.A140019039041
    [Google Scholar]
  7. MittalS. WuZ. NeelavalliJ. HaackeE.M. Susceptibility-weighted imaging: Technical aspects and clinical applications, part 2.AJNR Am. J. Neuroradiol.200930223225210.3174/ajnr.A146119131406
    [Google Scholar]
  8. ThomasG.E.C. LeylandL.A. SchragA.E. LeesA.J. Acosta-CabroneroJ. WeilR.S. Brain iron deposition is linked with cognitive severity in Parkinson’s disease.J. Neurol. Neurosurg. Psychiatry202091441842510.1136/jnnp‑2019‑32204232079673
    [Google Scholar]
  9. ZengC. ChenX. LiY. OuyangY. LvF. RumzanR. WangZ. Cerebral vein changes in relapsing-remitting multiple sclerosis demonstrated by three-dimensional enhanced T2*-weighted angiography at 3.0 T.Eur. Radiol.201323386987810.1007/s00330‑012‑2637‑522968782
    [Google Scholar]
  10. GangQ. ZhangJ. HaoP. XuY. Detection of hypoxic-ischemic brain injury with 3D-enhanced T2* weighted angiography (ESWAN) imaging.Eur. J. Radiol.201382111973198010.1016/j.ejrad.2013.05.02323777745
    [Google Scholar]
  11. ChenX. ZengC. LuoT. OuyangY. LvF. RumzanR. WangZ. LiQ. WangJ. HouH. HuangF. LiY. Iron deposition of the deep grey matter in patients with multiple sclerosis and neuromyelitis optica: A control quantitative study by 3D-enhanced susceptibility-weighted angiography (ESWAN).Eur. J. Radiol.2012814e633e63910.1016/j.ejrad.2012.01.00322280874
    [Google Scholar]
  12. ZengC. DuS. HanY. FuJ. LuoQ. XiangY. ChenX. LuoT. LiY. ZhengY. Optic radiations are thinner and show signs of iron deposition in patients with long-standing remitting-relapsing multiple sclerosis: An enhanced T2 *-weighted angiography imaging study.Eur. Radiol.201828104447445410.1007/s00330‑018‑5461‑829713769
    [Google Scholar]
  13. LiY. SongQ.W. SunM.Y. WangH.Q. WangS. WeiQ. LiuJ.H. TianS.F. TongZ.B. LiuA.L. Use of enhanced T2 star-weighted angiography (ESWAN) and R2* values to distinguish ovarian cysts due to endometriosis from other causes.Abdom. Imaging20154061733174110.1007/s00261‑014‑0314‑725504223
    [Google Scholar]
  14. YangJ. LiX. YangR. YuX. YuC. QianY. YuY. Susceptibility-weighted imaging manifestations in the brain of Wilson’s Disease Patients.PLoS One2015104e012510010.1371/journal.pone.012510025915414
    [Google Scholar]
  15. TongK.A. AshwalS. ObenausA. NickersonJ.P. KidoD. HaackeE.M. Susceptibility-weighted MR imaging: A review of clinical applications in children.AJNR Am. J. Neuroradiol.200829191710.3174/ajnr.A078617925363
    [Google Scholar]
  16. SoodS. GuptaR. ModiJ. SharmaJ. Susceptibility Weighted Imaging: Physics and Clinical applications in Neuroimaging at 3 Tesla.European Congress of RadiologyVienna, Austria2014917
    [Google Scholar]
  17. GuoL.F. GengJ. QiuM.H. MaoC.H. LiuC. CuiL. Quantification of phase values of cerebral microbleeds in hypertensive patients using ESWAN MRI.Clin. Neuroradiol.201323319720510.1007/s00062‑012‑0196‑423334227
    [Google Scholar]
  18. Valdés HernándezM. AllerhandM. GlatzA. ClaysonL. Muñoz ManiegaS. GowA. RoyleN. BastinM. StarrJ. DearyI. WardlawJ. Do white matter hyperintensities mediate the association between brain iron deposition and cognitive abilities in older people?Eur. J. Neurol.20162371202120910.1111/ene.1300627094820
    [Google Scholar]
  19. GuoL.F. WangG. ZhuX.Y. LiuC. CuiL. Comparison of ESWAN, SWI-SPGR, and 2D T2*-weighted GRE sequence for depicting cerebral microbleeds.Clin. Neuroradiol.201323212112710.1007/s00062‑012‑0185‑723212660
    [Google Scholar]
  20. FolsteinM.F. FolsteinS.E. McHughP.R. “Mini-mental state”.J. Psychiatr. Res.197512318919810.1016/0022‑3956(75)90026‑61202204
    [Google Scholar]
  21. HaackeE.M. AyazM. KhanA. ManovaE.S. KrishnamurthyB. GollapalliL. CiullaC. KimI. PetersenF. KirschW. Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs.abnormal iron content in the brain.J. Magn. Reson. Imaging200726225626410.1002/jmri.2298717654738
    [Google Scholar]
  22. ChenL. ZhangJ. WangQ-X. PengL. LuoX. ZhuW-Z. RoshanA.K. QiJ-P. WangH. Enhanced susceptibility-weighted angiography (ESWAN) of cerebral arteries and veins at 1.5 Tesla.Br. J. Radiol.20148710392013048610.1259/bjr.2013048624786315
    [Google Scholar]
  23. JiaZ. MohammedW. QiuY. HongX. ShiH. Hypertension increases the risk of cerebral microbleed in the territory of posterior cerebral artery: A study of the association of microbleeds categorized on a basis of vascular territories and cardiovascular risk factors.J. Stroke Cerebrovasc. Dis.2014231e5e1110.1016/j.jstrokecerebrovasdis.2012.12.01623434162
    [Google Scholar]
  24. PiloniN.E. FermandezV. VidelaL.A. PuntaruloS. Acute iron overload and oxidative stress in brain.Toxicology2013314117418210.1016/j.tox.2013.09.01524120471
    [Google Scholar]
  25. HaackeE.M. GarbernJ. MiaoY. HabibC. LiuM. Iron stores and cerebral veins in MS studied by susceptibility weighted imaging.Int. Angiol.201029214915720351671
    [Google Scholar]
  26. RodrigueK.M. HaackeE.M. RazN. Differential effects of age and history of hypertension on regional brain volumes and iron.Neuroimage201154275075910.1016/j.neuroimage.2010.09.06820923707
    [Google Scholar]
  27. WangJ. TangX. XiaM. LiC. GuoC. GeH. YinY. WangB. ChenW. FengH. Iron chelation suppresses secondary bleeding after intracerebral hemorrhage in angiotensin II-infused mice.CNS Neurosci. Ther.202127111327133810.1111/cns.1370634346561
    [Google Scholar]
  28. LiJ. ZhangQ. CheY. ZhangN. GuoL. Iron deposition characteristics of deep gray matter in elderly individuals in the community revealed by quantitative susceptibility mapping and multiple factor analysis.Front. Aging Neurosci.20211361189110.3389/fnagi.2021.61189133935681
    [Google Scholar]
  29. HallerS. BartschA. NguyenD. RodriguezC. EmchJ. GoldG. LovbladK.O. GiannakopoulosP. Cerebral microhemorrhage and iron deposition in mild cognitive impairment: Susceptibility-weighted MR imaging assessment.Radiology2010257376477310.1148/radiol.1010061220923870
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230627112146
Loading
/content/journals/cmir/10.2174/1573405620666230627112146
Loading

Data & Media loading...

Supplements

Supplementary material is available on the Publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test