Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Osteoporosis causes harmful influences on both men and women of all races. Bone mass, also referred to as “bone density,” is frequently used to assess the health of bone. Humans frequently experience bone fractures as a result of trauma, accidents, metabolic bone diseases, and disorders of bone strength, which are typically led by changes in mineral composition and result in conditions like osteoporosis, osteoarthritis, osteopenia, Artificial intelligence holds a lot of promise for the healthcare system. Data collection and preprocessing seem to be more essential for analysis, so bone images from different modalities, such as X-ray, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI), are taken into consideration that help to recognize, classify, and evaluate the patterns in clinical images. This research presents a comprehensive overview of the performance of various image processing techniques and deep learning approaches used to predict osteoporosis through image segmentation, classification, and fault detection. This survey outlined the proposed domain-based deep learning model for image classification in addition to the initial findings. The outcome identifies the flaws in the existing literature's methodology and lays the way for future work in the deep learning-based image analysis model.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230608091911
2024-01-01
2025-01-31
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e080623217779.html?itemId=/content/journals/cmir/10.2174/1573405620666230608091911&mimeType=html&fmt=ahah

References

  1. SözenT. ÖzışıkL. Calik BasaranN. An overview and management of osteoporosis.Eur. J. Rheumatol.201741465610.5152/eurjrheum.2016.04828293453
    [Google Scholar]
  2. Decreasing bone mass vector image.Available From: https://www.vectorstock.com/royalty-free-vector/decreasing-bone-mass-vector-19746901
  3. SmetsJ. ShevrojaE. HügleT. LeslieW.D. HansD. Machine learning solutions for osteoporosis—A review.J. Bone Miner. Res.202136583385110.1002/jbmr.4292
    [Google Scholar]
  4. YadavD.P. RathorS. Bone fracture detection and classification using deep learning approach.International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC)Mathura, India2020282285
    [Google Scholar]
  5. Surgeon General of the United States, National Institutes of Health and National Osteoporosis Foundation.Bone Health and Osteoporosis: A Report of the Surgeon General.Rockville (MD)Office of the Surgeon General (US)2004Available From: https://www.ncbi.nlm.nih.gov/books/NBK45515/figure/ch4.f4/
    [Google Scholar]
  6. YamamotoN. SukegawaS. KitamuraA. GotoR. NodaT. NakanoK. TakabatakeK. KawaiH. NagatsukaH. KawasakiK. FurukiY. OzakiT. Deep learning for osteoporosis classification using hip radiographs and patient clinical covariates.Biomolecules20201011153410.3390/biom10111534
    [Google Scholar]
  7. FeriziaU. HonigbS. ChangG. Artificial intelligence, osteoporosis and fragility fractures.Wolters Kluwer Health, Inc.2019
    [Google Scholar]
  8. Imaging of Musculoskeletal Disorders.Available From: https://www.radiologymasterclass.co.uk/tutorials/musculoskeletal/imaging-joints-bones/osteoporosis_x-ray
  9. HsiehC.-I. ZhengK. LinC. Automated bone mineral density prediction and fracture risk assessment using plain radiographs via deep learning.Nat. Commun.2021
    [Google Scholar]
  10. Osteoporosis Awareness.Available From: https://bergmanross.co.za/osteoporosis/
  11. FathimaN.S.M. TamilselviR. Parisa BehamM. A survey on osteoporosis detection methods with a focus on X-ray and dexa images.J. Inst. Electron. Telecommun. Eng.20206864640664
    [Google Scholar]
  12. PatilK.A. Mahendra PrashanthK.V. RamalingaiahDr. A A comparative study on the detection of osteoporosis using deep learning methods: A review.International Journal of Orthopaedics Sciences20217310815
    [Google Scholar]
  13. AreeckalA.S. KocherM. SumamD.S. Current and emerging diagnostic imaging-based techniques for assessment of osteoporosis and fracture risk.IEEE Rev. Biomed. Eng.20191225429994405
    [Google Scholar]
  14. WaniI.M. AroraS. Computer-aided diagnosis systems for osteoporosis detection: A comprehensive survey.Med. Biol. Eng. Comput.20205891873191710.1007/s11517‑020‑02171‑332583141
    [Google Scholar]
  15. CruzA.S. LinsH.C. MedeirosR.V.A. FilhoJ.M.F. da SilvaS.G. Artificial intelligence on the identification of risk groups for osteoporosis, a general review.Biomed. Eng. Online20181711210.1186/s12938‑018‑0436‑129378578
    [Google Scholar]
  16. TrajanoskaK. RivadeneiraF. The genetic architecture of osteoporosis and fracture risk.Bone201912621010.1016/j.bone.2019.04.00530980960
    [Google Scholar]
  17. Symptoms of osteoporosis.Available From: https://www.lispine.com/blog/symptoms-of-osteoporosis/
  18. KajlaV. GuptaA. KhatakA. Analysis of X-ray images with image processing techniques: A review.International Conference on Computing Communication and AutomationGreater Noida, India201814
    [Google Scholar]
  19. GuanB. ZhangG. YaoJ. WangX. Arm fracture detection in X-rays based on improved deep convolutional neural network.Comput. Electr. Eng.201881106530
    [Google Scholar]
  20. SeoKanghyen KimSeung Hun KangSeong Hyeon ParkJongwoon LeeChang Lae LeeYoungjin The effects of total variation (TV) technique for noise reduction in radio-magnetic X-ray image: Quantitative study.J Magnet201621593598
    [Google Scholar]
  21. MahendranS.K. Santhosh BabooS. An enhanced tibia fracture detection tool using image processing and classification fusion techniques in X-ray images.Global J Comp Sci Technol20111114238
    [Google Scholar]
  22. KirtiT. JitendraK. AshokS. Poisson noise reduction from X-ray images by region classification and response median filtering.Sādhanā201742855863
    [Google Scholar]
  23. ZhuH. SunW. WuM. GuanG. Pre-processing of x-ray medical image based on improved temporal recursive self-adaptive filter.The 9th International Conference for Young Computer ScientistsHunan, China2008758763
    [Google Scholar]
  24. BekkantiA. GogulamudiS. KarimunnisaS. Enhanced computerized bone fracture detection using harris corner detection.International Conference on Smart Electronics and CommunicationTrichy, India202057257610.1109/ICOSEC49089.2020.9215240
    [Google Scholar]
  25. Folasade Olubusola IsinkayeAbiodun Gabriel Aluko, Olayinka Ayodele Jongbo, Segmentation of medical x-ray bone image using different image processing techniques.I.J. Image, Graphics and Signal Processing2021532740
    [Google Scholar]
  26. Zeelan BashaC.M.A.K. Maruthi PadmajaT. BalajiG.N. Automatic X-ray image classification system.Smart Computing and Informatics SatapathyS. BhatejaV. DasS. vol 78SingaporeSpringer2017
    [Google Scholar]
  27. BashaC.Z. RohiniG. JayasriA.V. Enhanced and effective computerized classification of X-ray images.International Conference on Electronics and Sustainable Communication SystemsCoimbatore, India20208691
    [Google Scholar]
  28. AnilK. An improved segmentation algorithm for X-ray images based on adaptive thresholding classification.2019
    [Google Scholar]
  29. HrosikR.C. TubaE. DolicaninE. JovanovicR. Brain image segmentation based on firefly algorithm combined with K-means clustering.Stud. Inform. Control2019282167176
    [Google Scholar]
  30. PeruriS. VamsiJ. Bone fracture detection using image processing.Int. J. Sci. Dev. Res.20205632934
    [Google Scholar]
  31. SahuBarnali JenaShweta JagadevAlok Kumar A model for comparative analysis of medical bone X-ray images using image segmentation.Int J Telemed Clin Prac201613199208
    [Google Scholar]
  32. Zeelan BashaC.M.A.K. Maruthi PadmajaT. BalajiG.N. An effective and reliable computer automated technique for bone fracture detection.EAI Endorsed Trans. Pervasive Health Technol.2020518162402
    [Google Scholar]
  33. NordinC. Screening for osteoporosis: U.S. Preventive Services Task Force recommendation statement.Ann. Intern. Med.2011155427610.7326/0003‑4819‑155‑4‑201108160‑0002121844561
    [Google Scholar]
  34. ZhangJ. WuF. ChangW. KongD. Techniques and algorithms for hepatic vessel skeletonization in medical images: A survey.Entropy202224446510.3390/e2404046535455128
    [Google Scholar]
  35. XiangbinL.S. LiuS. ZhangY. A review of deep-learning-based medical image segmentation methods.MDPI Sustainability20211331224
    [Google Scholar]
  36. RonnebergerO FischerP BroxT U-Net: Convolutional networks for biomedical image segmentation.Computing and Computer-assisted intervention NarabN HorneggerJ WellsW FraagiA Springer Cham9351
    [Google Scholar]
  37. PerryJ. NguyenT. PeterM. PerryJ. Improved CT-based osteoporosis assessment with a fully automated deep learning tool.Radiol. Artif. Intell.202245e220042
    [Google Scholar]
  38. SukegawaS. YoshiiK. HaraT. YamashitaK. NakanoK. YamamotoN. NagatsukaH. FurukiY. Deep neural networks for dental implant system classification.Biomolecules202010798410.3390/biom1007098432630195
    [Google Scholar]
  39. HeK. ZhangX. RenS. SunJ. Deep residual learning for image recognition.Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.Las Vegas, NV, USA2016770778
    [Google Scholar]
  40. SzegedyC. LiuW. JiaY. SermanetP. ReedS. AnguelovD. ErhanD. VanhouckeV. RabinovichA. Going deeper with convolutions.Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern RecognitionBoston, MA, USA201519
    [Google Scholar]
  41. TanM. LeQ.V. EfficientNet: Rethinking model scaling for convolutional neural networks.36th International Conference on Machine LearningSan Diego, CA, USA2019915
    [Google Scholar]
  42. GaoL. JiaoT. FengQ. WangW. Application of artificial intelligence in diagnosis of osteoporosis using medical images: A systematic review and meta-analysis.Osteoporosis International2021327127986
    [Google Scholar]
  43. ChenY. YangT. GaoX. XuA. Hybrid deep learning model for risk prediction of fracture in patients with diabetes and osteoporosis.Frontiers of Medicine202216349650634448125
    [Google Scholar]
  44. FabijańskaA. Segmentation of corneal endothelium images using a U-Net-based convolutional neural network.Artif. Intell. Med.20188811310.1016/j.artmed.2018.04.00429680687
    [Google Scholar]
  45. SevastopolskyA. Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network.Pattern Recognit. Image Anal.201727361862410.1134/S1054661817030269
    [Google Scholar]
  46. NissinenT. SuorantaS. SaavalainenT. SundR. HurskainenO. RikkonenT. KrögerH. LähivaaraT. VäänänenS.P. Detecting pathological features and predicting fracture risk from dual-energy X-ray absorptiometry images using deep learning.Bone Rep.20211410107010.1016/j.bonr.2021.101070
    [Google Scholar]
  47. YasakaK. AkaiH. KunimatsuA. KiryuS. AbeO. Prediction of bone mineral density from computed tomography: Application of deep learning with a convolutional neural network.Eur. Radiol.20203063549355710.1007/s00330‑020‑06677‑032060712
    [Google Scholar]
  48. FangY. LeiW. ChenX. Opportunistic osteoporosis screening in multi-detector CT images using deep convolutional neural networks.Eur. Radiol.202131418319233001308
    [Google Scholar]
  49. KrishnarajA. BarrettS. Bregman-AmitaiO. Cohen-SfadyM. BarA. ChettritD. OrlovskyM. ElnekaveE. Simulating dual-energy X-ray absorptiometry in CT using deep-learning segmentation cascade.J. Am. Coll. Radiol.201916101473147910.1016/j.jacr.2019.02.03330982683
    [Google Scholar]
  50. DaganN. ElnekaveE. BardaN. Bregman-AmitaiO. BarA. OrlovskyM. BachmatE. BalicerR.D. Automated opportunistic osteoporotic fracture risk assessment using computed tomography scans to aid in FRAX underutilization.Nat. Med.2020261778210.1038/s41591‑019‑0720‑z31932801
    [Google Scholar]
  51. GuanB. ZhangG. YaoJ. Arm fracture detection in X-rays based on improved deep convolutional neural network.Comput. Electr. Eng.202081106530
    [Google Scholar]
  52. RenS. HeK. GirshickR. SunJ. Faster R-CNN: Towards real-time object detection with region proposal networks.IEEE Trans. Pattern Anal. Mach. Intell.20173961137114910.1109/TPAMI.2016.257703127295650
    [Google Scholar]
  53. LinT. DollP. GirshickR. HeK. HariharanB. BelongieS. AiF. TechC. Feature pyramid networks for object detection.2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)Honolulu, HI, USA201793694410.1109/CVPR.2017.106
    [Google Scholar]
  54. CaiZ VasconcelosN. Cascade R-CNN: Delving into high quality object detection.IEEE/CVF conf. comput. vis. pattern recogni.Salt Lake City, UT, USA615461622018
    [Google Scholar]
  55. GuanB. YaoJ. ZhangG. WangX. Thigh fracture detection using deep learning method based on new dilated convolutional feature pyramid network.Pattern Recognit. Lett.201912552152610.1016/j.patrec.2019.06.015
    [Google Scholar]
  56. YaoL. GuanX. SongX. TanY. WangC. JinC. ChenM. WangH. ZhangM. Rib fracture detection system based on deep learning.Sci. Rep.20211112351310.1038/s41598‑021‑03002‑7
    [Google Scholar]
  57. JangR. ChoiJ.H. KimN. ChangJ.S. YoonP.W. KimC.H. Prediction of osteoporosis from simple hip radiography using deep learning algorithm.Sci. Rep.20211111999710.1038/s41598‑021‑99549‑634620976
    [Google Scholar]
  58. AnamM. PonnusamyM.H. Osteoporosis prediction in trabecular bone using machine learning: A review.Comput. Mater. Continua202167189105
    [Google Scholar]
  59. ShenD. WuG. SukH.I. Deep Learning in Medical Image Analysis.Annu. Rev. Biomed. Eng.201719122124810.1146/annurev‑bioeng‑071516‑04444228301734
    [Google Scholar]
  60. JiaW. XiangjianH. KennedyP. “Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges”.J. Digit. Imaging2019
    [Google Scholar]
  61. MarwaF. ZahzahE. BouallegueK. MachhoutM. Deep learning based neural network application for automatic ultrasonic computed tomographic bone image segmentation.Multimedia Tools Appl.20228110135371356210.1007/s11042‑022‑12322‑335194385
    [Google Scholar]
  62. Rodríguez-EsparzaE. Zanella-CalzadaL.A. OlivaD. HeidariA.A. ZaldivarD. Pérez-CisnerosM. FoongL.K. An efficient Harris hawks-inspired image segmentation method.Expert Syst. Appl.202015511342810.1016/j.eswa.2020.113428
    [Google Scholar]
  63. HussainD. HanS.M. Computer-aided osteoporosis detection from DXA imaging.Comput. Methods Programs Biomed.20191738710710.1016/j.cmpb.2019.03.01131046999
    [Google Scholar]
  64. ZhangB. JiaC. WuR. Improving rib fracture detection accuracy and reading efficiency with deep learning-based detection software: A clinical evaluation.Br. J. Radiol.20219411182020087033332979
    [Google Scholar]
  65. Aasis UnnanuntanaM.D. BrianP. The assessment of fracture risk.J. Bone. Jt. Surg.201092374353
    [Google Scholar]
  66. SaranyaA. KottilingamDr. K. A survey on bone fracture identification techniques using quantitative and learning based algorithms.2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS)Coimbatore, India2412482021
    [Google Scholar]
  67. Available From: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991939/
  68. DuGetao CaoXu LiangJimin ChenXueli Medical image segmentation based on U-net: A review.J Imag Sci Technol2020Preprint
    [Google Scholar]
  69. ZhaoC. XiangS. WangY. CaiZ. ShenJ. ZhouS. ZhaoD. SuW. GuoS. LiS. Context-aware network fusing transformer and V-Net for semi-supervised segmentation of 3D center atrium.Expert Syst. Appl.202321411910510.1016/j.eswa.2022.119105
    [Google Scholar]
  70. ShenyW. XuyW. ZhangH. Automatic segmentation of the femur and tibia bones from X-ray images based on pure dilated residual U-net.Inverse Probl. Imaging (Springfield)20211561333346
    [Google Scholar]
  71. ChebliA. DjebbarA. MarouaniH.F. Semi-supervised learning for medical application: A survey.Proceedings of the 2018 International Conference on Applied Smart SystemsMedea, Algeria192019
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230608091911
Loading
/content/journals/cmir/10.2174/1573405620666230608091911
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test