Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

The distinction between benign and borderline epithelial ovarian tumors is important because treatment and follow-up strategies differ.

 Objective

We aimed to evaluate benign, borderline, and malignant epithelial ovarian tumors using MRI features and contributed to the preoperative evaluation.

Methods

MRIs of 81 patients (20 bilateral), including 31 benign, 27 borderline, and 23 malignant, who had pelvic imaging between 2013-2020, were evaluated retrospectively. The evaluation was made blindly to the pathology result by two radiologists with MRI scoring and features that we determined. MRI evaluation was performed with T1 TSE, T2 TSE, fat-suppressed T2 TSE, and before and after contrast T1 fat-suppressed and non-fat-suppressed TSE images. The numbers and findings obtained in scoring were evaluated by Chi-Square, ordinal logistic regression, and 2 and 3 category ROC analysis.

Results

The total score varied between 7 and 24. Among the three groups, a significant difference was found in terms of T1, T2 signal intensity (p <0.01), size (p = 0.055), solid area (p <0.001), septa number (p <0.05), ovarian parenchyma (p = 0.001), ascites (p <0.001), peritoneal involvement (p <0.001), laterality (p <0.001), contrast enhancement pattern (p <0.001). On the other hand, no significant difference was found in terms of wall thickness, lymph node involvement and endometrial thickness (p> 0.05). Cut-off values were found as 11.5 and 18.5 in the 3-category ROC analysis performed for the score (VUS: 0.8109). Patients with a score below 11.5 were classified as benign, those between 11.5-18.5 as borderline, and those over 18.5 as malignant.

Conclusion

The differentiation of borderline tumors from benign and malignant tumors by MRI scoring will contribute to the preoperative diagnosis.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230606125445
2023-06-26
2024-11-26
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E060623217706.html?itemId=/content/journals/cmir/10.2174/1573405620666230606125445&mimeType=html&fmt=ahah

References

  1. AlvarezR.M. Vazquez-VicenteD. Fertility sparing treatment in borderline ovarian tumours.Ecancermedicalscience2015950710.3332/ecancer.2015.50725729420
    [Google Scholar]
  2. BorrelliG.M. de MattosL.A. AndresM.P. GonçalvesM.O. KhoR.M. AbrãoM.S. Role of imaging tools for the diagnosis of borderline ovarian tumors: A systematic review and meta-analysis.J. Minim. Invasive Gynecol.201724335336310.1016/j.jmig.2016.12.01228027973
    [Google Scholar]
  3. KaferI. SunM. PelleritoJ. Breaking borders: A case report of borderline ovarian tumor in the pregnant patient.Ultrasound Q.201632438038310.1097/RUQ.000000000000021127870789
    [Google Scholar]
  4. CanfarottaM. GillanE. BalarezoF. CampbellB. TsaiA. FinckC. Diagnosis, surgical treatment, and management of borderline ovarian surface epithelial neoplasms: Report of 2 cases and review of literature.J. Pediatr. Surg. Case Rep.201421046847210.1016/j.epsc.2014.09.009
    [Google Scholar]
  5. LiY.A. QiangJ.W. MaF.H. LiH.M. ZhaoS.H. MRI features and score for differentiating borderline from malignant epithelial ovarian tumors.Eur. J. Radiol.2018989813614210.1016/j.ejrad.2017.11.01429279152
    [Google Scholar]
  6. GershensonD.M. Management of borderline ovarian tumours.Best Pract. Res. Clin. Obstet. Gynaecol.201741495910.1016/j.bpobgyn.2016.09.01227780698
    [Google Scholar]
  7. AlexanderS CunhaTM ForstnerR Adnexal masses: Benign ovarian lesions and characterization.In: Medical Radiology Springer, Cham2017241271
    [Google Scholar]
  8. ParkS.Y. OhY.T. JungD.C. Differentiation between borderline and benign ovarian tumors: Combined analysis of MRI with tumor markers for large cystic masses (≥5 cm).Acta Radiol.201657563363910.1177/028418511559726626231948
    [Google Scholar]
  9. FlicekK.T. VanBurenW. DudiakK. LahkmanY. ChenL.W. ButlerK. MeniasC.O. Borderline epithelial ovarian tumors: What the radiologist should know.Abdom. Radiol.20214662350236610.1007/s00261‑020‑02688‑z32860524
    [Google Scholar]
  10. LiH.M. FengF. QiangJ.W. Quantitative dynamic contrast-enhanced MR imaging for differentiating benign, borderline, and malignant ovarian tumors.Abdom Radiol.201843113132314110.1007/s00261‑018‑1569‑1
    [Google Scholar]
  11. MatsuoK. MachidaH. TakiuchiT. GrubbsB.H. RomanL.D. SoodA.K. GershensonD.M. Role of hysterectomy and lymphadenectomy in the management of early-stage borderline ovarian tumors.Gynecol. Oncol.2017144349650210.1016/j.ygyno.2017.01.01928131526
    [Google Scholar]
  12. Amies OelschlagerA.M.E. GowK.W. MorseC.B. Lara-TorreE. Management of large ovarian neoplasms in pediatric and adolescent females.J. Pediatr. Adolesc. Gynecol.2016292889410.1016/j.jpag.2014.07.01826165911
    [Google Scholar]
  13. PulsL. HeidtmanE. HunterJ.E. CraneM. StaffordJ. The accuracy of frozen section by tumor weight for ovarian epithelial neoplasms.Gynecol. Oncol.1997671161910.1006/gyno.1997.48369345350
    [Google Scholar]
  14. SongT. ChoiC.H. KimH.J. KimM.K. KimT.J. LeeJ.W. BaeD.S. KimB.G. Accuracy of frozen section diagnosis of borderline ovarian tumors.Gynecol. Oncol.2011122112713110.1016/j.ygyno.2011.03.02121492922
    [Google Scholar]
  15. Thomassin-NaggaraI. AubertE. RockallA. Jalaguier-CoudrayA. RouzierR. DaraïE. BazotM. Adnexal masses: Development and preliminary validation of an MR imaging scoring system.Radiology2013267243244310.1148/radiol.1312116123468574
    [Google Scholar]
  16. DenewarF.A. TakeuchiM. UranoM. KamishimaY. KawaiT. TakahashiN. TakeuchiM. KobayashiS. HondaJ. ShibamotoY. Multiparametric MRI for differentiation of borderline ovarian tumors from stage I malignant epithelial ovarian tumors using multivariate logistic regression analysis.Eur. J. Radiol.20179111612310.1016/j.ejrad.2017.04.00128629557
    [Google Scholar]
  17. YangS. TangH. XiaoF. ZhuJ. HuaT. TangG. Differentiation of borderline tumors from type I ovarian epithelial cancers on CT and MR imaging.Abdom. Radiol.202045103230323810.1007/s00261‑020‑02467‑w32162020
    [Google Scholar]
  18. BentC.L. SahdevA. RockallA.G. SinghN. SohaibS.A. ReznekR.H. MRI appearances of borderline ovarian tumours.Clin. Radiol.200964443043810.1016/j.crad.2008.09.01119264189
    [Google Scholar]
  19. MaF.H. ZhaoS.H. QiangJ.W. ZhangG.F. WangX.Z. WangL. MRI appearances of mucinous borderline ovarian tumors: Pathological correlation.J. Magn. Reson. Imaging201440374575110.1002/jmri.2440824395397
    [Google Scholar]
  20. ZhaoS.H. QiangJ.W. ZhangG.F. WangS.J. QiuH.Y. WangL. MRI in differentiating ovarian borderline from benign mucinous cystadenoma: Pathological correlation.J. Magn. Reson. Imaging201439116216610.1002/jmri.2408324123278
    [Google Scholar]
  21. TimmermanD. Van CalsterB. TestaA. SavelliL. FischerovaD. FroymanW. WynantsL. Van HolsbekeC. EpsteinE. FranchiD. KaijserJ. CzekierdowskiA. GuerrieroS. FruscioR. LeoneF.P.G. RossiA. LandolfoC. VergoteI. BourneT. ValentinL. Predicting the risk of malignancy in adnexal masses based on the simple rules from the international ovarian tumor analysis group.Am. J. Obstet. Gynecol.2016214442443710.1016/j.ajog.2016.01.00726800772
    [Google Scholar]
  22. ChoS KimB. CT and MRI findings of cystadenofibromas of the ovary.Eur Radiol200414579880410.1007/s00330‑003‑2060‑z
    [Google Scholar]
  23. ForstnerR. Thomassin-NaggaraI. CunhaT.M. KinkelK. MasselliG. Kubik-HuchR. SpencerJ.A. RockallA. ESUR recommendations for MR imaging of the sonographically indeterminate adnexal mass: An update.Eur. Radiol.20172762248225710.1007/s00330‑016‑4600‑327770228
    [Google Scholar]
  24. BazotM. HaouyD. DaraïE. CortezA. Dechoux-VodovarS. Thomassin-NaggaraI. Is MRI a useful tool to distinguish between serous and mucinous borderline ovarian tumours?Clin. Radiol.2013681e1e810.1016/j.crad.2012.08.02123044365
    [Google Scholar]
  25. Shen-GuntherJ. MannelR.S. Ascites as a predictor of ovarian malignancy.Gynecol. Oncol.2002871778310.1006/gyno.2002.680012468346
    [Google Scholar]
  26. ZhaoS.H. QiangJ.W. ZhangG.F. BoykoO.B. WangS.J. CaiS.Q. WangL. MRI appearances of ovarian serous borderline tumor: Pathological correlation.J. Magn. Reson. Imaging201440115115610.1002/jmri.2433924923479
    [Google Scholar]
  27. BernardinL. DilksP. LiyanageS. MiquelM.E. SahdevA. RockallA. Effectiveness of semi-quantitative multiphase dynamic contrast-enhanced MRI as a predictor of malignancy in complex adnexal masses: radiological and pathological correlation.Eur. Radiol.201222488089010.1007/s00330‑011‑2331‑z22095438
    [Google Scholar]
  28. KazerooniA.F. MalekM. HaghighatkhahH. ParvizS. NabilM. TorbatiL. AssiliS. Saligheh RadH. GityM. Semiquantitative dynamic contrast-enhanced MRI for accurate classification of complex adnexal masses.J. Magn. Reson. Imaging201745241842710.1002/jmri.2535927367786
    [Google Scholar]
  29. CarterJ.S. KoopmeinersJ.S. Kuehn-HajderJ.E. MetzgerG.J. LakkadiN. DownsL.S.Jr BolanP.J. Quantitative multiparametric MRI of ovarian cancer.J. Magn. Reson. Imaging20133861501150910.1002/jmri.2411923559453
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230606125445
Loading
/content/journals/cmir/10.2174/1573405620666230606125445
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test