Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Aim

This study aimed to automatically implement liver disease quantification (DQ) in lymphoma using CT images without lesion segmentation.

Background

Computed Tomography (CT) imaging manifestations of liver lymphoma include diffuse infiltration, blurred boundaries, vascular drift signs, and multiple lesions, making liver lymphoma segmentation extremely challenging.

Methods

The method includes two steps: liver recognition and liver disease quantification. We use the transfer learning technique to recognize the diseased livers automatically and delineate the livers manually using the CAVASS software. When the liver is recognized, liver disease quantification is performed using the disease map model. We test our method in 10 patients with liver lymphoma. A random grouping cross-validation strategy is used to evaluate the quantification accuracy of the manual and automatic methods, with reference to the ground truth.

Results

We split the 10 subjects into two groups based on lesion size. The average accuracy for the total lesion burden (TLB) quantification is 91.76% ± 0.093 for the group with large lesions and 95.57% ± 0.032 for the group with small lesions using the manual organ (MO) method. An accuracy of 85.44% ± 0.146 for the group with larger lesions and 81.94% ± 0.206 for the small lesion group is obtained using the automatic organ (AO) method, with reference to the ground truth.

Conclusion

Our DQ-MO and DQ-AO methods show good performance for varied lymphoma morphologies, from homogeneous to heterogeneous, and from single to multiple lesions in one subject. Our method can also be extended to CT images of other organs in the abdomen for disease quantification, such as Kidney, Spleen and Gallbladder.

© 2024 The Author(s). Published by Bentham Open. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230531162711
2024-01-01
2025-01-18
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e310523217506.html?itemId=/content/journals/cmir/10.2174/1573405620666230531162711&mimeType=html&fmt=ahah

References

  1. FengJ. HuH. HuangB. ChenZ. YangW. JinC. MRI and CT features of primary hepatic lymphoma.J Chin Clin Med Imaging202031671674
    [Google Scholar]
  2. GuanJ. DuF. WeiM. PengY. ChenY. Study on the imaging findings of primary hepatic lymphoma.J Chengdu Med College201813671676
    [Google Scholar]
  3. HanD. BayouthJ. SongQ. Globally optimal tumor segmentation in PET-CT images: A graph-based co-segmentation method.Information Processing in Medical Imaging SzékelyG. HahnH.K. LNCS, Springer2011vol 680124525610.1007/978‑3‑642‑22092‑0_21
    [Google Scholar]
  4. SmeetsD. LoeckxD. StijnenB. De DobbelaerB. VandermeulenD. SuetensP. Semi-automatic level set segmentation of liver tumors combining a spiral-scanning technique with supervised fuzzy pixel classification.Med. Image Anal.2010141132010.1016/j.media.2009.09.00219828356
    [Google Scholar]
  5. HoogiA. BeaulieuC.F. CunhaG.M. HebaE. SirlinC.B. NapelS. RubinD.L. Adaptive local window for level set segmentation of CT and MRI liver lesions.Med. Image Anal.201737465510.1016/j.media.2017.01.00228157660
    [Google Scholar]
  6. LiB.N. ChuiC.K. ChangS. OngS.H. A new unified level set method for semi-automatic liver tumor segmentation on contrast-enhanced CT images.Expert Syst. Appl.201239109661966810.1016/j.eswa.2012.02.095
    [Google Scholar]
  7. CohenAB DiamantI KlangE AmitaiM GreenspanH. Automatic detection and segmentation of liver metastatic lesions on serial CT examinations.Proc. SPIE20149035903519
    [Google Scholar]
  8. YanJ. SchwartzL.H. ZhaoB. Semiautomatic segmentation of liver metastases on volumetric CT images.Med. Phys.201542116283629310.1118/1.493236526520721
    [Google Scholar]
  9. BaâzaouiA. BarhoumiW. AhmedA. ZagroubaE. Semi-automated segmentation of single and multiple tumors in liver CT images using entropy-based fuzzy region growing.IRBM20173829810810.1016/j.irbm.2017.02.003
    [Google Scholar]
  10. FreimanM. CooperO. LischinskiD. JoskowiczL. Liver tumors segmentation from CTA images using voxels classification and affinity constraint propagation.Int. J. CARS20116224725510.1007/s11548‑010‑0497‑520574799
    [Google Scholar]
  11. KhanM Z GajendranM K LeeY KhanM A deep neural architectures for medical image semantic segmentation: Review.IEEE Access202198300283024
    [Google Scholar]
  12. ZhengZ. ShengV.S. WangL. LiZ. XiX. CuiZ. SemicNet: a semicircular network for the segmentation of the liver and its lesions.IJSNet202135316110.1504/IJSNET.2021.113838
    [Google Scholar]
  13. HekerM. BenA. GreenspanH. Hierarchical fine-tuning for joint liver lesion segmentation and lesion classification in CT.2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)23-27 JulyBerlin, Germany201910.1109/EMBC.2019.8857127
    [Google Scholar]
  14. ChenL. SongH. WangC. CuiY. YangJ. HuX. ZhangL. Liver tumor segmentation in CT volumes using an adversarial densely connected network.BMC Bioinformatics201920S1658710.1186/s12859‑019‑3069‑x31787071
    [Google Scholar]
  15. MengL. TianY. BuS. Liver tumor segmentation based on 3D convolutional neural network with dual scale.J. Appl. Clin. Med. Phys.202021114415710.1002/acm2.1278431793212
    [Google Scholar]
  16. NandaN. KakkarP. NagpalS. Computer-aided segmentation of liver lesions in CT scans using cascaded convolutional neural networks and genetically optimised classifier.Arab. J. Sci. Eng.20194444049406210.1007/s13369‑019‑03735‑8
    [Google Scholar]
  17. WithofsN. BernardC. van der RestC. MartiniveP. HattM. JodogneS. VisvikisD. LeeJ.A. CouckeP.A. HustinxR. FDG PET/CT for rectal carcinoma radiotherapy treatment planning: Comparison of functional volume delineation algorithms and clinical challenges.J. Appl. Clin. Med. Phys.201415521622810.1120/jacmp.v15i5.469625207560
    [Google Scholar]
  18. GeworskiL. KarwarthC. FitzE. PlotkinM. KnoopB. [Quality control in PET/CT systems: Experiences and requirements].Z. Med. Phys.2010201465010.1016/j.zemedi.2009.10.00920304719
    [Google Scholar]
  19. HofheinzF PoetzschC Quantitative 3D ROI delineation in PET: Algorithm and validation.J Nucl Med200748400407
    [Google Scholar]
  20. HofheinzF. DittrichS. PötzschC. HoffJ. Effects of cold sphere walls in PET phantom measurements on the volume reproducing threshold.Phys. Med. Biol.20105541099111310.1088/0031‑9155/55/4/01320107246
    [Google Scholar]
  21. TongY. UdupaJ.K. OdhnerD. WuC. SchusterS.J. TorigianD.A. Disease quantification on PET/CT images without explicit object delineation.Med. Image Anal.20195116918310.1016/j.media.2018.11.00230453165
    [Google Scholar]
  22. RonnebergerO. FischerP. BroxT. U-Net: Convolutional networks for biomedical image segmentation.International Conference on Medical image computing and computer-assisted intervention2015 OCT 5-9Munich, Germany2015935110.1007/978‑3‑319‑24574‑4_28
    [Google Scholar]
  23. UdupaJ.K. OdhnerD. ZhaoL. TongY. MatsumotoM.M.S. CiesielskiK.C. FalcaoA.X. VaideeswaranP. CiesielskiV. SabouryB. MohammadianrasananiS. SinS. ArensR. TorigianD.A. Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images.Med. Image Anal.201418575277110.1016/j.media.2014.04.00324835182
    [Google Scholar]
  24. WangH. UdupaJ.K. OdhnerD. TongY. ZhaoL. TorigianD.A. Automatic anatomy recognition in whole-body PET/CT images.Med. Phys.201643161362910.1118/1.493912726745953
    [Google Scholar]
  25. MIPG Developed Software.Available from: http://www.mipg.upenn.edu/Vnews/mipg_software.html
  26. The liver imaging atlas.Available from: http://www.liveratlas.org
/content/journals/cmir/10.2174/1573405620666230531162711
Loading
/content/journals/cmir/10.2174/1573405620666230531162711
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test