Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Medical diagnostic systems has recently been very popular and reliable because of possible automatic detections. The machine learning algorithm is evolved as a core tool of computer-aided diagnosis (CAD) for automatic early and accurate disease detections. The algorithm follows region of interest (ROI) selection followed by specific feature extractions and selection from medical images. The selected features are then fed to suitable classifiers for disease identification. The machine learning algorithm's performance depends on the features selected and the classifiers employed for the job. This paper reviews different feature extraction selection and classification techniques for CAD from ultrasound images. Ultrasonography (USG), due to its portability and its non-invasive nature, is the prime choice of doctors for prescribing as an imaging test. A survey on the USG imaging based on four major diseases is performed in this paper, whose diagnosis followed by automatic detection. Various techniques applied for feature extraction, selection, and classification by different authors to achieve improved accuracy are tabulated. For medical images, we found texture based gray-level extracted features and SVM (support vector machine) classifiers to be more significant in improving classification accuracy, even achieving 100% accuracy in many research articles. However, many research articles also suggest the importance of student’s t-test in improving classification accuracy by selecting significant features from extracted features. The proposed algorithm's accuracy also depends on the quality of medical images, which are frequently degraded by the introduction of noise and artifacts while imaging acquisition. So, challenges in denoising are added in this paper as a separate topic to highlight the role of the machine learning algorithm in removing noise and artifacts from the USG images.

© 2024 The Author(s). Published by Bentham Open. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230529112655
2024-01-01
2025-01-18
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e290523217408.html?itemId=/content/journals/cmir/10.2174/1573405620666230529112655&mimeType=html&fmt=ahah

References

  1. BrattainL.J. TelferB.A. DhyaniM. GrajoJ.R. SamirA.E. Machine learning for medical ultrasound: status, methods, and future opportunities.Abdom. Radiol.201843478679910.1007/s00261‑018‑1517‑029492605
    [Google Scholar]
  2. KhandpurR.S. Biomedical Instrumentation: Technology and Applications.1st edIndiaMcGraw-Hill Education2004
    [Google Scholar]
  3. HuangQ. ZhangF. LiX. Machine learning in ultrasound computer-aided diagnostic systems: A survey.BioMed Res. Int.2018201811010.1155/2018/513790429687000
    [Google Scholar]
  4. MougiakakouS.G. GolematiS. GousiasI. NicolaidesA.N. NikitaK.S. Computer-aided diagnosis of carotid atherosclerosis based on ultrasound image statistics, Laws’ texture and neural networks.Ultrasound Med. Biol.2007331263610.1016/j.ultrasmedbio.2006.07.03217189044
    [Google Scholar]
  5. AcharyaR.U. FaustO. AlvinA.P.C. SreeS.V. MolinariF. SabaL. NicolaidesA. SuriJ.S. Symptomatic vs. asymptomatic plaque classification in carotid ultrasound.J. Med. Syst.20123631861187110.1007/s10916‑010‑9645‑221243411
    [Google Scholar]
  6. TsiaparasN. GolematiS. AndreadisI. StoitsisJ.S. ValavanisI. NikitaK.S. Comparison of multiresolution features for texture classification of carotid atherosclerosis from B-mode ultrasound.IEEE Trans. Inf. Technol. Biomed.201115113013710.1109/TITB.2010.209151121075733
    [Google Scholar]
  7. Rajendra AcharyaU. Rama KrishnanM.M. Vinitha SreeS. SanchesJ. ShafiqueS. NicolaidesA. PedroL.M. SuriJ.S. Plaque tissue characterization and classification in ultrasound carotid scans: A paradigm for vascular feature amalgamation.IEEE Trans. Instrum. Meas.201362239240010.1109/TIM.2012.2217651
    [Google Scholar]
  8. Menchón-LaraR.M. Bastida-JumillaM.C. Morales-SánchezJ. Sancho-GómezJ.L. Automatic detection of the intima-media thickness in ultrasound images of the common carotid artery using neural networks.Med. Biol. Eng. Comput.201452216918110.1007/s11517‑013‑1128‑424281725
    [Google Scholar]
  9. HuangX. ZhangY. QianM. MengL. XiaoY. NiuL. ZhengR. ZhengH. Classification of carotid plaque echogenicity by combining texture features and morphologic characteristics.J. Ultrasound Med.201635102253226110.7863/ultra.15.0900227582533
    [Google Scholar]
  10. LekadirK. GalimzianovaA. BetriuA. del Mar VilaM. IgualL. RubinD.L. FernandezE. RadevaP. NapelS. A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound.IEEE J. Biomed. Health Inform.2017211485510.1109/JBHI.2016.263140127893402
    [Google Scholar]
  11. SabaL. JainP.K. SuriH.S. IkedaN. ArakiT. SinghB.K. NicolaidesA. ShafiqueS. GuptaA. LairdJ.R. SuriJ.S. Plaque tissue morphology-based stroke risk stratification using carotid ultrasound: A polling-based PCA learning paradigm.J. Med. Syst.20174169810.1007/s10916‑017‑0745‑028501967
    [Google Scholar]
  12. ArakiT. JainP.K. SuriH.S. LondheN.D. IkedaN. El-BazA. ShrivastavaV.K. SabaL. NicolaidesA. ShafiqueS. LairdJ.R. GuptaA. SuriJ.S. Stroke risk stratification and its validation using ultrasonic echolucent carotid wall plaque morphology: A machine learning paradigm.Comput. Biol. Med.201780Oct779610.1016/j.compbiomed.2016.11.01127915126
    [Google Scholar]
  13. QianC. YangX. An integrated method for atherosclerotic carotid plaque segmentation in ultrasound image.Comput. Methods Programs Biomed.2018153193210.1016/j.cmpb.2017.10.00229157451
    [Google Scholar]
  14. BiswasM. KuppiliV. SabaL. EdlaD.R. SuriH.S. SharmaA. Cuadrado-GodiaE. LairdJ.R. NicolaidesA. SuriJ.S. Deep learning fully convolution network for lumen characterization in diabetic patients using carotid ultrasound: A tool for stroke risk.Med. Biol. Eng. Comput.201957254356410.1007/s11517‑018‑1897‑x30255236
    [Google Scholar]
  15. LiY.C. ShenT.Y. ChenC.C. ChangW.T. LeeP.Y. HuangC.C.J. Automatic detection of atherosclerotic plaque and calcification from intravascular ultrasound images by using deep convolutional neural networks.IEEE Trans. Ultrason. Ferroelectr. Freq. Control20216851762177210.1109/TUFFC.2021.305248633460377
    [Google Scholar]
  16. JainP.K. SharmaN. GiannopoulosA.A. SabaL. NicolaidesA. SuriJ.S. Hybrid deep learning segmentation models for atherosclerotic plaque in internal carotid artery B-mode ultrasound.Comput. Biol. Med.202113610472110.1016/j.compbiomed.2021.10472134371320
    [Google Scholar]
  17. MinhasF.A.A. SabihD. HussainM. Automated classification of liver disorders using ultrasound images.J. Med. Syst.20123653163317210.1007/s10916‑011‑9803‑122072280
    [Google Scholar]
  18. AcharyaU.R. SreeS.V. RibeiroR. KrishnamurthiG. MarinhoR.T. SanchesJ. SuriJ.S. Data mining framework for fatty liver disease classification in ultrasound: A hybrid feature extraction paradigm.Med. Phys.2012397Part14255426410.1118/1.472575922830759
    [Google Scholar]
  19. SubramanyaM.B. KumarV. MukherjeeS. SainiM. A CAD system for B-mode fatty liver ultrasound images using texture features.J. Med. Eng. Technol.201539212313010.3109/03091902.2014.99016025522808
    [Google Scholar]
  20. AcharyaU.R. RaghavendraU. FujitaH. HagiwaraY. KohJ.E.W. Jen HongT. SudarshanV.K. VijayananthanA. YeongC.H. GudigarA. NgK.H. Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images.Comput. Biol. Med.20167925025810.1016/j.compbiomed.2016.10.02227825038
    [Google Scholar]
  21. SabaL. DeyN. AshourA.S. SamantaS. NathS.S. ChakrabortyS. SanchesJ. KumarD. MarinhoR. SuriJ.S. Automated stratification of liver disease in ultrasound: An online accurate feature classification paradigm.Comput. Methods Programs Biomed.201613011813410.1016/j.cmpb.2016.03.01627208527
    [Google Scholar]
  22. AcharyaU.R. FujitaH. BhatS. RaghavendraU. GudigarA. MolinariF. VijayananthanA. Hoong NgK. Decision support system for fatty liver disease using GIST descriptors extracted from ultrasound images.Inf. Fusion201629323910.1016/j.inffus.2015.09.006
    [Google Scholar]
  23. AcharyaU.R. FujitaH. SudarshanV.K. MookiahM.R.K. KohJ.E.W. TanJ.H. HagiwaraY. ChuaC.K. JunnarkarS.P. VijayananthanA. NgK.H. An integrated index for identification of fatty liver disease using radon transform and discrete cosine transform features in ultrasound images.Inf. Fusion201631435310.1016/j.inffus.2015.12.007
    [Google Scholar]
  24. KuppiliV. BiswasM. SreekumarA. SuriH.S. SabaL. EdlaD.R. MarinhoeR.T. SanchesJ.M. SuriJ.S. Extreme learning machine framework for risk stratification of fatty liver disease using ultrasound tissue characterization.J. Med. Syst.2017411015210.1007/s10916‑017‑0797‑128836045
    [Google Scholar]
  25. BiswasM. KuppiliV. EdlaD.R. SuriH.S. SabaL. MarinhoeR.T. SanchesJ.M. SuriJ.S. Symtosis: A liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm.Comput. Methods Programs Biomed.201815516517710.1016/j.cmpb.2017.12.01629512496
    [Google Scholar]
  26. MaoB. MaJ. DuanS. XiaY. TaoY. ZhangL. Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics.Eur. Radiol.20213174576458610.1007/s00330‑020‑07562‑633447862
    [Google Scholar]
  27. AcharyaU.R. Vinitha SreeS. MookiahM.R.K. YantriR. MolinariF. ZieleźnikW. Małyszek-TumidajewiczJ. StępieńB. BardalesR.H. WitkowskaA. SuriJ.S. Diagnosis of Hashimoto’s thyroiditis in ultrasound using tissue characterization and pixel classification.Proc. Inst. Mech. Eng. H2013227778879810.1177/095441191348363723636761
    [Google Scholar]
  28. OmiotekZ. Fractal analysis of the grey and binary images in diagnosis of Hashimoto’s thyroiditis.Biocybern. Biomed. Eng.201737465566510.1016/j.bbe.2017.08.004
    [Google Scholar]
  29. LiD. ZhangY. DuL. Texture analysis and classification of diffuse thyroid diseases based on ultrasound images2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)201816
    [Google Scholar]
  30. TsantisS. DimitropoulosN. CavourasD. NikiforidisG. Morphological and wavelet features towards sonographic thyroid nodules evaluation.Comput. Med. Imaging Graph.2009332919910.1016/j.compmedimag.2008.10.01019111442
    [Google Scholar]
  31. MaJ. SiL. ManjiriD. Differential diagnosis of thyroid nodules with ultrasound elastography based on support vector machines.2010 IEEE International Ultrasonics Symposium20101372137510.1109/ULTSYM.2010.5935482
    [Google Scholar]
  32. IakovidisD.K. KeramidasE.G. MaroulisD. Fusion of fuzzy statistical distributions for classification of thyroid ultrasound patterns.Artif. Intell. Med.2010501334110.1016/j.artmed.2010.04.00420427164
    [Google Scholar]
  33. ChangC.Y. ChenS-J. TsaiM-F. Application of support-vector-machine-based method for feature selection and classification of thyroid nodules in ultrasound images.Pattern Recognit.201043103494350610.1016/j.patcog.2010.04.023
    [Google Scholar]
  34. ChenH.L. YangB. WangG. LiuJ. ChenY.D. LiuD.Y. A three-stage expert system based on support vector machines for thyroid disease diagnosis.J. Med. Syst.20123631953196310.1007/s10916‑011‑9655‑821286792
    [Google Scholar]
  35. AcharyaU.R. FaustO. SreeS.V. MolinariF. GarberoglioR. SuriJ.S. Cost-effective and non-invasive automated benign and malignant thyroid lesion classification in 3D contrast-enhanced ultrasound using combination of wavelets and textures: A class of ThyroScan™ algorithms.Technol. Cancer Res. Treat.201110437138010.7785/tcrt.2012.50021421728394
    [Google Scholar]
  36. AcharyaU.R. FaustO. SreeS.V. MolinariF. SuriJ.S. ThyroScreen system: High resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform.Comput. Methods Programs Biomed.2012107223324110.1016/j.cmpb.2011.10.00122054816
    [Google Scholar]
  37. RaghavendraU. Rajendra AcharyaU. GudigarA. Hong TanJ. FujitaH. HagiwaraY. MolinariF. KongmebholP. Hoong NgK. Fusion of spatial gray level dependency and fractal texture features for the characterization of thyroid lesions.Ultrasonics20177711012010.1016/j.ultras.2017.02.00328219805
    [Google Scholar]
  38. ChiJ. WaliaE. BabynP. WangJ. GrootG. EramianM. Thyroid nodule classification in ultrasound images by fine-tuning deep convolutional neural network.J. Digit. Imaging201730447748610.1007/s10278‑017‑9997‑y28695342
    [Google Scholar]
  39. RaghavendraU. AnjanG. MaithriM. Optimized multi-level elongated quinary patterns for the assessment of thyroid nodules in ultrasound images.Comput. Biol. Med.20179511556210.1016/j.compbiomed.2018.02.002
    [Google Scholar]
  40. WangJ. JiangJ. ZhangD. ZhangY. GuoL. JiangY. DuS. ZhouQ. An integrated AI model to improve diagnostic accuracy of ultrasound and output known risk features in suspicious thyroid nodules.Eur. Radiol.20223232120212910.1007/s00330‑021‑08298‑734657970
    [Google Scholar]
  41. KhannaN.N. JamthikarA.D. GuptaD. PigaM. SabaL. CarcassiC. GiannopoulosA.A. NicolaidesA. LairdJ.R. SuriH.S. MavrogeniS. ProtogerouA.D. SfikakisP. KitasG.D. SuriJ.S. Rheumatoid arthritis: Atherosclerosis imaging and cardiovascular risk assessment using machine and deep learning–based tissue characterization.Curr. Atheroscler. Rep.2019212710.1007/s11883‑019‑0766‑x30684090
    [Google Scholar]
  42. BurlinaP. BillingsS. JoshiN. AlbaydaJ. Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods.PLoS One2017128e018405910.1371/journal.pone.018405928854220
    [Google Scholar]
  43. DabbaghchianS. GhaemmaghamiM.P. AghagolzadehA. Feature extraction using discrete cosine transform and discrimination power analysis with a face recognition technology.Pattern Recognit.20104341431144010.1016/j.patcog.2009.11.001
    [Google Scholar]
  44. ChangM.C. PeterB. GerhardS. Feature extraction and K-means clustering approach to explore important features of urban identity.2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)201710.1109/ICMLA.2017.00015
    [Google Scholar]
  45. Mohd SagheerS.V. GeorgeS.N. A review on medical image denoising algorithms.Biomed. Signal Process. Control20206110203610.1016/j.bspc.2020.102036
    [Google Scholar]
  46. ArnalJ. MayzelI. Parallel techniques for speckle noise reduction in medical ultrasound images.Adv. Eng. Softw.202014810286710.1016/j.advengsoft.2020.102867
    [Google Scholar]
  47. El-saidS.A. AzarA.T. Speckles suppression techniques for ultrasound images.J. Med. Imaging Radiat. Sci.201243420021310.1016/j.jmir.2012.06.00131052006
    [Google Scholar]
  48. GuptaM. TanejaH. ChandL. Performance enhancement and analysis of filters in ultrasound image denoising.Procedia Comput. Sci.201813264365210.1016/j.procs.2018.05.063
    [Google Scholar]
  49. SinghK. SharmaB. SinghJ. SrivastavaG. SharmaS. AggarwalA. ChengX. Local statistics-based speckle reducing bilateral filter for medical ultrasound images.Mob. Netw. Appl.20202562367238910.1007/s11036‑020‑01615‑2
    [Google Scholar]
  50. YangJ. FanJ. AiD. WangX. ZhengY. TangS. WangY. Local statistics and non-local mean filter for speckle noise reduction in medical ultrasound image.Neurocomputing2016195889510.1016/j.neucom.2015.05.140
    [Google Scholar]
  51. TianC. FeiL. ZhengW. XuY. ZuoW. LinC.W. Deep learning on image denoising: An overview.Neural Netw.202013125127510.1016/j.neunet.2020.07.02532829002
    [Google Scholar]
  52. Duarte-SalazarC.A. Castro-OspinaA.E. BecerraM.A. Delgado-TrejosE. Speckle noise reduction in ultrasound images for improving the metrological evaluation of biomedical applications: An overview.IEEE Access20208159831599910.1109/ACCESS.2020.2967178
    [Google Scholar]
  53. KaurP. SinghG. KaurP. A review of denoising medical images using machine learning approaches.Curr. Med. Imaging Rev.201814567568510.2174/157340561366617042815415630532667
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230529112655
Loading
/content/journals/cmir/10.2174/1573405620666230529112655
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test