Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background

Researchers have made several advancements in this field, including automatic segmentation techniques, computer-aided diagnosis, mobile-based technology, deep learning methods, hybrid methods All these techniques are beneficial in diagnosing melanoma or segregating skin lesions into different categories.

Aim

This paper aims to define different types of skin cancers, diagnosis procedures and statistics. This paper presents skin cancer statistics over a period of time in India. The increment in the number of skin carcinoma and melanoma cases from 1990 to 2020 as well as the mortality rates, has been presented in this paper. Also, this paper provides a review of different technologies used by researchers in detecting melanoma.

Conclusion

The rise in the number of cases by 2040 and mortality rates are compared. The statistics that are used in this paper are as per hospital-based cancer registries (HBCR) 2021 prepared by the Indian Council of Medical Research - National Centre for Disease Informatics and Research, Bengaluru (ICMR-NCDIR) and from World Health Organization (WHO).

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230410092618
2024-01-01
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e100423215589.html?itemId=/content/journals/cmir/10.2174/1573405620666230410092618&mimeType=html&fmt=ahah

References

  1. OrthaberK. PristovnikM.D. SkokK. Skin cancer and its treatment: Novel treatment approaches with emphasis on nanotechnology.J. Nanomater.201720172120
    [Google Scholar]
  2. RamamoorthyT. LeburuS. KulothunganV. MathurP. Regional estimates of noncommunicable diseases associated risk factors among adults in India: results from National Noncommunicable Disease Monitoring Survey.BMC Public Health2022221106910.1186/s12889‑022‑13466‑535637501
    [Google Scholar]
  3. DubaiP. BhattS. JoglekarC. PatiiS. Skin cancer detection and classification.Proc. 2017 6th Int. Conf. Electr. Eng. Informatics Sustain. Soc. Through Digit. Innov. ICEEI2018201716
    [Google Scholar]
  4. AzmiN.F.M. SarkanH.M. YahyaY. ChupratS. ABCD rules segmentation on malignant tumor and Benign skin lesion images2016 3rd Int. Conf. Comput. Inf. Sci. ICCOINS 2016 - Proc.2016667010.1109/ICCOINS.2016.7783190
    [Google Scholar]
  5. NachbarF. StolzW. MerkleT. CognettaA.B. VogtT. LandthalerM. BilekP. Braun-FalcoO. PlewigG. The ABCD rule of dermatoscopy.J. Am. Acad. Dermatol.199430455155910.1016/S0190‑9622(94)70061‑38157780
    [Google Scholar]
  6. MoussaR. GergesF. SalemC. AkikiR. FalouO. AzarD. Computer-aided detection of Melanoma using geometric features2016 3rd Middle East Conference on Biomedical Engineering (MECBME).2016201612512810.1109/MECBME.2016.7745423
    [Google Scholar]
  7. Khushmeen BrarA. SamantP. Review of an automated clinical decision support system for skin abrasion recognition and classificationIJRAR20196151117
    [Google Scholar]
  8. AbrahamA. SobhanakumariK. MohanA. Artificial intelligence in dermatology.J. Ski. Sex. Transm. Dis.20213199102
    [Google Scholar]
  9. CoronaR. SeraF. BinderM. CerroniL. Dermoscopy of pigmented skin lesions: Results of a consensus meeting via the internet.J Am Acad Dermatol.200348567993
    [Google Scholar]
  10. MaglogiannisI. DoukasC.N. Overview of advanced computer vision systems for skin lesions characterization.IEEE Trans. Inf. Technol. Biomed.200913572173310.1109/TITB.2009.201752919304487
    [Google Scholar]
  11. PickertA. Basic Dermoscopy for the Resident CUTIS CUTIS20128916
    [Google Scholar]
  12. LeeT. NgV. GallagherR. ColdmanA. McLeanD. Dullrazor®: A software approach to hair removal from images.Comput. Biol. Med.199727653354310.1016/S0010‑4825(97)00020‑69437554
    [Google Scholar]
  13. MendoncaT. PedroM.F JorgeS.M Andr´eR.S. JorgeR. PH2 - A dermoscopic image database for research and benchmarking.35th Annual International Conference of the IEEE EMBSOsaka, Japan1967144677682
    [Google Scholar]
  14. ChowdhuryS. Universal health coverage - There is more to it than meets the eye.J. Family Med. Prim. Care20176216917029026777
    [Google Scholar]
  15. GoyalP. K. JainM. K. Computer-aided diagnosis of melanoma skin cancer: A review Advances in Data and Information Sciences2018637310.1007/978‑981‑10‑8360‑0_6
    [Google Scholar]
  16. MehtaP. ShahB. Review on techniques and steps of computer aided skin cancer diagnosis.Procedia Comput. Sci.20168530931610.1016/j.procs.2016.05.238
    [Google Scholar]
  17. GutmanD. Skin lesion analysis toward melanoma detection : A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC)2016
    [Google Scholar]
  18. NoelC.F. GutmanD. Emre CelebiM. HelbaB. MarchettiM.A. DuszaS.W. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration.2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)201715
    [Google Scholar]
  19. CodellaN.R. TschandNV. CelebiP. DuszaM.E. GutmanS. Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC).Preprint.2018112
    [Google Scholar]
  20. TschandlP. RosendahlC. KittlerH. Data Descriptor : The HAM 10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions.Nat. Publ. Gr.2018519
    [Google Scholar]
  21. HoshyarA.N. Al-JumailyA. HoshyarA.N. The beneficial techniques in preprocessing step of skin cancer detection system comparing.Procedia Comput. Sci.201442C253110.1016/j.procs.2014.11.029
    [Google Scholar]
  22. SinghN. KaurP. Comprehensive review of techniques used to detect skin lesion2017 2nd International Conference for Convergence in Technology (I2CT)201710.1109/I2CT.2017.8226102
    [Google Scholar]
  23. PetrellisN. Using Color Signatures for the Classification of Skin Disorders2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST).201810.1109/MOCAST.2018.8376573
    [Google Scholar]
  24. AbuzaghlehO. BarkanaB.D. FaezipourM. Automated skin lesion analysis based on color and shape geometry feature set for melanoma early detection and prevention.IEEE Long Isl. Syst. Appl. Technol. Conf. LISAT201420141610.1109/LISAT.2014.6845199
    [Google Scholar]
  25. AdjedF. Safdar GardeziS.J. AbabsaF. FayeI. Chandra DassS. Fusion of structural and textural features for melanoma recognition.IET Comput. Vis.201812218519510.1049/iet‑cvi.2017.0193
    [Google Scholar]
  26. BarataC. RuelaM. FranciscoM. MendoncaT. MarquesJ.S. Two systems for the detection of melanomas in dermoscopy images using texture and color features.IEEE Syst. J.20148396597910.1109/JSYST.2013.2271540
    [Google Scholar]
  27. RajeshA. Classification of malignant melanoma and Benign Skin Lesion by using back propagation neural network and ABCD rule.Cluster Comput.201818
    [Google Scholar]
  28. GanesanP. VadivelM. SivakumarV.G. VasanthK. Hill climbing optimization and fuzzy C-means clustering for melanoma skin cancer identification and segmentation6th Int. Conf. Adv. Comput. Commun. Syst.357361202010.1109/ICACCS48705.2020.9074333
    [Google Scholar]
  29. SankaranS. SethumadhavanG. Quantifications of asymmetries on the spectral bands of malignant melanoma using six sigma threshold as preprocessor3rd International Conference on Computational Intelligence and Information Technologyvol. 20138086201310.1049/cp.2013.2575
    [Google Scholar]
  30. TabassumT. MuniaK. AlamN. NeubertJ. Fazel-rezaiR. MemberS. Automatic diagnosis of melanoma using linear and nonlinear features from digital image.Annu Int Conf IEEE Eng Med Biol Soc.2017201742814284
    [Google Scholar]
  31. PunalD. Computer vision for diagnosis of malignant melanoma by pixel intensity matrix parameters.10th International Conference on Intelligent Systems and Control.Coimbatore, India2016725
    [Google Scholar]
  32. DhinagarN.J. CelenkM. Noninvasive screening and discrimination of skin images for early melanoma detection.Bioinformatics and Biomedical Engineering, (iCBBE) 2011 5th International Conference on.20111410.1109/icbbe.2011.5780198
    [Google Scholar]
  33. RasulF. DeyN.K. HashemM.M.A. A comparative study of neural network architectures for lesion segmentation and melanoma detectionUndergraduate Thesis: A Study on Computer-Aided Pneumonia Diagnosis in Chest X-Rays20205727510.1109/TENSYMP50017.2020.9230969
    [Google Scholar]
  34. DildarM. Skin Cancer Detection: A review using deep learning techniques.Int. J. Environ. Res. Public. Health.20211810547910.3390/ijerph18105479
    [Google Scholar]
  35. AdegunA.A. ViririS. Deep learning-based system for automatic melanoma detection.IEEE Access202087160717210.1109/ACCESS.2019.2962812
    [Google Scholar]
  36. YuZ. JiangX. MemberS. ZhouF. QinJ. NiD. Melanoma recognition in dermoscopy images via aggregated deep convolutional features.IEEE Trans. Biomed. Eng.20181
    [Google Scholar]
  37. AfzaF. SharifM. MittalM. AttiqueM. HemanthD. J. A hierarchical three-step superpixels and deep learning framework for skin lesion classification.Methods.202220288102
    [Google Scholar]
  38. AliS. MiahS. HaqueJ. RahmanM. Machine Learning with Applications An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models. Mach. Learn. with Appl.20215April100036
    [Google Scholar]
  39. KumarE.P. SharmaE.P. Artificial neural networks-a study201422143148
    [Google Scholar]
  40. ArasiM.A. SalemA.M. Malignant Melanoma Detection and Diagnosis.20175561
    [Google Scholar]
  41. TumpaP.P. KabirA. An Artificial Neural Network Based Detection and Classification of Melanoma Skin Cancer Using Hybrid Texture Features.Sensors Int2021100128
    [Google Scholar]
  42. KhanM.A. ZhangY. SharifM. AkramT. Pixels to Classes: Intelligent learning framework for multiclass skin lesion localization and classification.Comput. Electr. Eng.202190106956
    [Google Scholar]
  43. CzajkowskaJ. BaduraP. KorzekwaS. AnnaP. Deep learning approach to skin layers segmentation in inflammatory dermatoses.Ultrasonics.202111410641210.1016/j.ultras.2021.106412
    [Google Scholar]
  44. HeklerA. Superior skin cancer classification by the combination of human and artificial intelligence.Eur. J. Cancer2019Vol. 120114121
    [Google Scholar]
  45. HasanM.K. RoyS. MondalC. AlamM.A. E ElahiM.T. DuttaA. Uddin RajuS.M.T. JawadM.T. AhmadM. Dermo-DOCTOR: A framework for concurrent skin lesion detection and recognition using a deep convolutional neural network with end-to-end dual encoders.Biomed. Signal Process. Control202168April10266110.1016/j.bspc.2021.102661
    [Google Scholar]
  46. PiramanayagamS. SaberE. SchwartzkopfW. KoehlerF.W. Supervised classification of multisensor remotely sensed images using a deep learning framework.Computer Science, Environmental Science2018125
    [Google Scholar]
  47. WuX. ShiZ. Utilizing multilevel features for cloud detection on satellite imagery.Remote Sens.2018101112310.1109/TGRS.2018.2832193
    [Google Scholar]
  48. Nasr-EsfahaniE. RafieiS. JafariM.H. KarimiN. WrobelJ.S. SamaviS. Reza SoroushmehrS.M. Dense pooling layers in fully convolutional network for skin lesion segmentation.Comput. Med. Imaging Graph.20197810165810.1016/j.compmedimag.2019.10165831634739
    [Google Scholar]
  49. RonnebergerO. FischerP. BroxT. U-Net: Convolutional networks for biomedical image segmentationInternational Conference on Medical Image Computing and Computer-Assisted Intervention201510.1007/978‑3‑319‑24574‑4_28
    [Google Scholar]
  50. DingY. ChenF. ZhaoY. WuZ. ZhangC. WuD. A stacked multi-connection simple reducing net for brain tumor segmentation.IEEE Access2019710401110402410.1109/ACCESS.2019.2926448
    [Google Scholar]
  51. WibowoA. PurnamaS.R. WirawanP.W. RasyidiH. Lightweight encoder-decoder model for automatic skin lesion segmentation.Inform Med Unlocked20212510064010.1016/j.imu.2021.100640
    [Google Scholar]
  52. SanjarK. BekhzodO. KimJ. KimJ. PaulA. KimJ. Improved U-Net: Fully convolutional network model for skin-lesion segmentation.Appl. Sci.202010103658
    [Google Scholar]
  53. KoyluC. ZhaoC. ShaoW. Deep Neural networks and kernel density estimation for detecting human activity patterns from geo-tagged images: A case study of birdwatching on flickr.ISPRS Int. J. Geo-Inf.2019814510.3390/ijgi8010045
    [Google Scholar]
  54. WeijunP. YingjieD. QiangZ. JiahaoT. JunZ. Deep Learning for Aircraft Wake Vortex IdentificationIOP Conference Series Materials Science and Engineering2019685101201510.1088/1757‑899X/685/1/012015
    [Google Scholar]
  55. AlbahliS. Melanoma Lesion Detection and Segmentation Using YOLOv4-DarkNet and Active Contour.IEEE Access2020Vol. 8198403198414
    [Google Scholar]
  56. BanerjeeS. SinghS.K. ChakrabortyA. DasA. BagR. Melanoma diagnosis using deep learning and fuzzy logic.Diagnostics202010857710.3390/diagnostics10080577
    [Google Scholar]
  57. XiaoF. WuQ. Visual saliency based global–local feature representation for skin cancer classification.IET Image Process.202014102140214810.1049/iet‑ipr.2019.1018
    [Google Scholar]
  58. HagertyJ. R. Deep learning and handcrafted method fusion: higher diagnostic accuracy for melanoma dermoscopy images.IEEE J Biomed Health Inform.20192341385139110.1109/JBHI.2019.2891049
    [Google Scholar]
  59. RomanC.M SchlagerJ.G Haggenmu¨llerS. von KalleC. UtikalJ.S. MeierF. A benchmark for neural network robustness in skin cancer classification.Eur J Cancer.2021155191199
    [Google Scholar]
  60. RahmanZ. HossainS. IslamR. HasanM. Informatics in Medicine Unlocked An approach for multiclass skin lesion classification based on ensemble learning.2021Vol. 25
    [Google Scholar]
  61. ToğaçarM. CömertZ. ErgenB. Intelligent skin cancer detection applying autoencoder, MobileNetV2 and spiking neural networks.Chaos Solitons Fractals202114411071410.1016/j.chaos.2021.110714
    [Google Scholar]
  62. MoradiN. Mahdavi-amiriN. Biomedical signal processing and control multi-class segmentation of skin lesions via joint dictionary learning.Biomed. Signal Process. Control202168102787
    [Google Scholar]
  63. TangP. YanX. LiangQ. ZhangD. AFLN-DGCL: Adaptive Feature Learning Network with Difficulty-Guided Curriculum Learning for skin lesion segmentation.Appl. Soft Comput.202111010765610.1016/j.asoc.2021.107656
    [Google Scholar]
  64. ZhouQ. ShiY. A. N. XuZ. QuR. XuG. Classifying melanoma skin lesions using convolutional spiking neural networks with unsupervised STDP learning rule.IEEE Access2020PP99)1110.1109/ACCESS.2020.2998098
    [Google Scholar]
  65. IkumaY. Production of the grounds for melanoma clasification using adaptive fuzzy inference neural networkIEEE International Conference on Systems, Man, and CyberneticsManchester, UKvol. 13257025752013
    [Google Scholar]
  66. MahdirajiS.A. BaleghiY. SakhaeiS.M. BIBS, a new descriptor for melanoma/non-melanoma DiscriminationIranian Conference on Electrical Engineering (ICEE)Mashhad,Iranvol. 1813971402201810.1109/ICEE.2018.8472701
    [Google Scholar]
  67. WaheedZ. An efficient machine learning approach for the detection of melanoma using dermoscopic images.International Conference on Communication, Computing and Digital Systems (C-CODE)Islamabad, Pakistan20173161910.1109/C‑CODE.2017.7918949
    [Google Scholar]
  68. SoumyaR.S. NeethuS. AneeshR.P. Advanced earlier melanoma detection algorithm using colour correlogramInternational Conference onCommunication Systems and NetworksThiruvananthapuram, Indiavol. 16190194201610.1109/CSN.2016.7824012
    [Google Scholar]
  69. ReshmaM. ShanB.P. Two methodologies for identification of stages and different types of melanoma detection. IEEE Conference on Emerging Devices And Smart SystemsMallasamudram, India17257259201710.1109/ICEDSS.2017.8073689
    [Google Scholar]
  70. HoshyarA.N. Al-JumailyA. SulaimanR. Review on automatic early skin cancer detection2011 International Conference on Computer Science and Service System (CSSS)Nanjing, China2011403639
    [Google Scholar]
  71. TakruriM. Bayesian Decision Fusion for Enhancing Melanoma Recognition AccuracyInternational Conference on Electrical and Computing Technologies and ApplicationsRas Al Khaimah, UAEvol. 17710201710.1109/ICECTA.2017.8252063
    [Google Scholar]
  72. GarnaviR. AldeenM. MemberS. BaileyJ. Computer-aided diagnosis of melanoma using border- and wavelet-based texture analysisIEEE Transaction on Information Technology in Bio Medicine201216612395210.1109/TITB.2012.2212282
    [Google Scholar]
  73. ChatterjeeS. Mathematical morphology aided shape.Texture and Colour Feature Extraction from Skin Lesion for Identification of Malignant Melanoma2015200203
    [Google Scholar]
  74. NezhadianF.K. Melanoma skin cancer detection using color and new texture features.2017 Artificial Intelligence and Signal Processing Conference (AISP)Shiraz, Iran20171510.1109/AISP.2017.8324108
    [Google Scholar]
  75. BiD. ZhuD. SheykhahmadF.R. QiaoM. Computer-aided skin cancer diagnosis based on a New meta-heuristic algorithm combined with support vector method.Biomed. Signal Process. Control202168465510263110.1016/j.bspc.2021.102631
    [Google Scholar]
  76. BagheriF. TarokhM.J. ZiaratbanM. Skin lesion segmentation from dermoscopic images by using Mask R-CNN, Retina-Deeplab, and graph-based methods.Biomed. Signal Process. Control20216710253310.1016/j.bspc.2021.102533
    [Google Scholar]
  77. YasminJ.H.J. SathikM.M. BeeviS.Z. Robust Segmentation Algorithm using LOG Edge Detector for Effective Border Detection of Noisy Skin Lesions.2011 International Conference on Computer, Communication and Electrical Technology (ICCCET).Tirunelveli, India20116065
    [Google Scholar]
  78. AbuzaghlehO. BarkanaB.D. FaezipourM. SKINcure: A real time image analysis system to aid in the malignant melanoma prevention and early detection2014 Southwest Symposium on Image Analysis and InterpretationSan Diego, CA, USA20148588
    [Google Scholar]
  79. FirmansyahH.R. Detection melanoma cancer using ABCD rule based on mobile device.International Electronics Symposium on Knowledge Creation and Intelligent Computingvol. 2017127131201710.1109/KCIC.2017.8228575
    [Google Scholar]
  80. GoceriE. Diagnosis of skin diseases in the era of deep learning and mobile technology.Comput. Biol. Med.2021134April10445810.1016/j.compbiomed.2021.104458
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230410092618
Loading
/content/journals/cmir/10.2174/1573405620666230410092618
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Computer-aided diagnosis; Melanoma; Mortality; Non-melanoma; Skin carcinoma; Statistics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test