Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

This paper is an exhaustive survey of computer-aided diagnosis (CAD) system-based automatic detection of several diseases from ultrasound images. CAD plays a vital role in the automatic and early detection of diseases. Health monitoring, medical database management, and picture archiving systems became very feasible with CAD, assisting radiologists in making decisions over any imaging modality. Imaging modalities mainly rely on machine learning and deep learning algorithms for early and accurate disease detection. CAD approaches are described in this paper in terms of it's their significant tools; digital image processing (DIP), machine learning (ML), and deep learning (DL). Ultrasonography (USG) already has many advantages over other imaging modalities; therefore, CAD analysis of USG assists radiologists in studying it more clearly, leading to USG application over various body parts. This paper includes a review of those major diseases whose detection supports “ML algorithm” based diagnosis from USG images. ML algorithm follows feature extraction, selection, and classification in the required class. The literature survey of these diseases is grouped into the carotid region, transabdominal & pelvic region, musculoskeletal region, and thyroid region. These regions also differ in the types of transducers employed for scanning. Based on the literature survey, we have concluded that texture-based extracted features passed to support vector machine (SVM) classifier results in good classification accuracy. However, the emerging deep learning-based disease classification trend signifies more preciseness and automation for feature extraction and classification. Still, classification accuracy depends on the number of images used for training the model. This motivated us to highlight some of the significant shortcomings of automated disease diagnosis techniques. Research challenges in CAD-based automatic diagnosis system design and limitations in imaging through USG modality are mentioned as separate topics in this paper, indicating future scope and improvement in this field. The success rate of machine learning approaches in USG-based automatic disease detection motivated this review paper to describe different parameters behind machine learning and deep learning algorithms towards improving USG diagnostic performance.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405619666230306101012
2024-01-01
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e060323214359.html?itemId=/content/journals/cmir/10.2174/1573405619666230306101012&mimeType=html&fmt=ahah

References

  1. DoiK. Current status and future potential of computer-aided diagnosis in medical imaging.Br. J. Radiol.200578Spec No 1Suppl. 1s3s1910.1259/bjr/8293334315917443
    [Google Scholar]
  2. DoiK. Computer-Aided Diagnosis in Medical ImagingAchievements and Challenges. World Congress on Medical Physics and Biomedical EngineeringSeptember 7 - 12, 2009Munich, Germany2009969610.1007/978‑3‑642‑03904‑1_26
    [Google Scholar]
  3. WernickM. YangY. BrankovJ. YourganovG. StrotherS. Machine Learning in Medical Imaging.IEEE Signal Process. Mag.2010274253810.1109/MSP.2010.93673025382956
    [Google Scholar]
  4. ShiraishiJ. LiQ. AppelbaumD. DoiK. Computer-aided diagnosis and artificial intelligence in clinical imaging.Semin. Nucl. Med.201141644946210.1053/j.semnuclmed.2011.06.00421978447
    [Google Scholar]
  5. LutzH. BuscariniE. Manual of diagnostic ultrasound.2nd edSwitzerlandWorld Health Organization2011
    [Google Scholar]
  6. SprawlsP. Physical Principles of Medical Imaging.2nd edUSAMedical Physics Publishing1995
    [Google Scholar]
  7. CarmodyK.A. MooreC.L. KopmanD.F. Handbook of Critical Care and Emergency Ultrasound.ChinaMcGraw-Hill Education2011
    [Google Scholar]
  8. BickU. DiekmannF. Digital Mammography.Medical RadiologySpringerBerlin, Heidelberg201010.1007/978‑3‑540‑78450‑0
    [Google Scholar]
  9. CarovacA. SmajlovicF. JunuzovicD. Application of ultrasound in medicine.Acta Inform. Med.201119316817110.5455/aim.2011.19.168‑17123408755
    [Google Scholar]
  10. SarkiR. AhmedK. WangH. ZhangY. MaJ. WangK. Image preprocessing in classification and identification of diabetic eye diseases.Data Science and Engineering202144547110.1007/s41019‑021‑00167‑z
    [Google Scholar]
  11. Paulo MazzonciniD.A-M. AriannaM. MarcelloS. RangarajM. Medical image analysis and informatics: Computer-aided diagnosis and therapy: Computer-aided diagnosis and therapy.1st ed.CRC Press201710.1201/9781351228343
    [Google Scholar]
  12. BrattainL.J. TelferB.A. DhyaniM. GrajoJ.R. SamirA.E. Machine learning for medical ultrasound: status, methods, and future opportunities.Abdom. Radiol. (N.Y.)201843478679910.1007/s00261‑018‑1517‑029492605
    [Google Scholar]
  13. HuangQ. ZhangF. LiX. Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey.BioMed Res. Int.2018201811010.1155/2018/513790429687000
    [Google Scholar]
  14. DabbaghchianS. GhaemmaghamiM.P. AghagolzadehA. Feature extraction using discrete cosine transform and discrimination power analysis with a face recognition technology.Pattern Recognit.20104341431144010.1016/j.patcog.2009.11.001
    [Google Scholar]
  15. ChangM-C. BusP. SchmittG. Feature Extraction and K-means Clustering Approach to Explore Important Features of Urban Identity.2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)201710.1109/ICMLA.2017.00015
    [Google Scholar]
  16. CastiglioniI. RundoL. CodariM. Di LeoG. SalvatoreC. InterlenghiM. GallivanoneF. CozziA. D’AmicoN.C. SardanelliF. AI applications to medical images: From machine learning to deep learning.Phys. Med.20218392410.1016/j.ejmp.2021.02.00633662856
    [Google Scholar]
  17. KhannaN.N. JamthikarA.D. GuptaD. PigaM. SabaL. CarcassiC. GiannopoulosA.A. NicolaidesA. LairdJ.R. SuriH.S. MavrogeniS. ProtogerouA.D. SfikakisP. KitasG.D. SuriJ.S. Rheumatoid Arthritis: Atherosclerosis imaging and cardiovascular risk assessment using machine and deep learning–based tissue characterization.Curr. Atheroscler. Rep.2019212710.1007/s11883‑019‑0766‑x30684090
    [Google Scholar]
  18. AcharyaR.U. FaustO. AlvinA.P.C. SreeS.V. MolinariF. SabaL. NicolaidesA. SuriJ.S. Symptomatic vs. asymptomatic plaque classification in carotid ultrasound.J. Med. Syst.20123631861187110.1007/s10916‑010‑9645‑221243411
    [Google Scholar]
  19. AcharyaU.R. FujitaH. BhatS. RaghavendraU. GudigarA. MolinariF. VijayananthanA. Hoong NgK. Decision support system for fatty liver disease using GIST descriptors extracted from ultrasound images.Inf. Fusion201629323910.1016/j.inffus.2015.09.006
    [Google Scholar]
  20. MougiakakouS.G. GolematiS. GousiasI. NicolaidesA.N. NikitaK.S. Computer-aided diagnosis of carotid atherosclerosis based on ultrasound image statistics, Laws’ texture and neural networks.Ultrasound Med. Biol.2007331263610.1016/j.ultrasmedbio.2006.07.03217189044
    [Google Scholar]
  21. TsiaparasN. GolematiS. AndreadisI. StoitsisJ.S. ValavanisI. NikitaK.S. Comparison of multiresolution features for texture classification of carotid atherosclerosis from B-mode ultrasound.IEEE Trans. Inf. Technol. Biomed.201115113013710.1109/TITB.2010.209151121075733
    [Google Scholar]
  22. AthanasiouL.S. KarvelisP.S. TsakanikasV.D. NakaK.K. MichalisL.K. BourantasC.V. FotiadisD.I. A novel semiautomated atherosclerotic plaque characterization method using grayscale intravascular ultrasound images: comparison with virtual histology.IEEE Trans. Inf. Technol. Biomed.201216339140010.1109/TITB.2011.218152922203721
    [Google Scholar]
  23. AcharyaU.R. FaustO. SV.S. AlvinA.P.C. KrishnamurthiG. SeabraJ.C.R. SanchesJ. SuriJ.S. Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization.Comput. Methods Programs Biomed.20131101667510.1016/j.cmpb.2012.09.00823122720
    [Google Scholar]
  24. Menchón-LaraR.M. Bastida-JumillaM.C. Morales-SánchezJ. Sancho-GómezJ.L. Automatic detection of the intima-media thickness in ultrasound images of the common carotid artery using neural networks.Med. Biol. Eng. Comput.201452216918110.1007/s11517‑013‑1128‑424281725
    [Google Scholar]
  25. LekadirK. GalimzianovaA. BetriuA. del Mar VilaM. IgualL. RubinD.L. FernandezE. RadevaP. NapelS. A Convolutional Neural Network for Automatic Characterization of Plaque Composition in Carotid Ultrasound.IEEE J. Biomed. Health Inform.2017211485510.1109/JBHI.2016.263140127893402
    [Google Scholar]
  26. BiswasM. KuppiliV. SabaL. EdlaD.R. SuriH.S. SharmaA. Cuadrado-GodiaE. LairdJ.R. NicolaidesA. SuriJ.S. Deep learning fully convolution network for lumen characterization in diabetic patients using carotid ultrasound: a tool for stroke risk.Med. Biol. Eng. Comput.201957254356410.1007/s11517‑018‑1897‑x30255236
    [Google Scholar]
  27. SabaL. SanagalaS.S. GuptaS.K. KoppulaV.K. LairdJ.R. ViswanathanV. SanchesM.J. KitasG.D. JohriA.M. SharmaN. NicolaidesA. SuriJ.S. A multicenter study on carotid ultrasound plaque tissue characterization and classification using six deep artificial intelligence models: A stroke application.IEEE Trans. Instrum. Meas.20217011210.1109/TIM.2021.3052577
    [Google Scholar]
  28. VansteenkisteE. HuysmansB. GovaertP. LequinM. PhilipsW. Texture-Based Classification of Periventricular Leukomalacia in Preterm Ultrasound Images.Curr. Med. Imaging Rev.20084211312410.2174/157340508784356761
    [Google Scholar]
  29. ArakiT. JainPK SuriHS Stroke risk stratification and its validation using ultrasonic echolucent carotid wall plaque morphology: A machine learning paradigm.Comput. Biol. Med.2017807796
    [Google Scholar]
  30. SabaL. JainP.K. SuriH.S. IkedaN. ArakiT. SinghB.K. NicolaidesA. ShafiqueS. GuptaA. LairdJ.R. SuriJ.S. Plaque Tissue Morphology-Based Stroke Risk Stratification Using Carotid Ultrasound: A Polling-Based PCA Learning Paradigm.J. Med. Syst.20174169810.1007/s10916‑017‑0745‑028501967
    [Google Scholar]
  31. YehW.C. JengY.M. LiC.H. LeeP.H. LiP.C. Liver steatosis classification using high-frequency ultrasound.Ultrasound Med. Biol.200531559960510.1016/j.ultrasmedbio.2005.01.00915866409
    [Google Scholar]
  32. RibeiroR. SanchesJ. Fatty liver characterization and classification by ultrasound.Lect. Notes Comput. Sci.2009552435436110.1007/978‑3‑642‑02172‑5_46
    [Google Scholar]
  33. AcharyaU.R. Data mining framework for fatty liver disease classification in ultrasound : A hybrid feature extraction paradigm.201239742554264
    [Google Scholar]
  34. MinhasF.A.A. SabihD. HussainM. Automated classification of liver disorders using ultrasound images.J. Med. Syst.20123653163317210.1007/s10916‑011‑9803‑122072280
    [Google Scholar]
  35. AcharyaU.R. FujitaH. SudarshanV.K. MookiahM.R.K. KohJ.E.W. TanJ.H. HagiwaraY. ChuaC.K. JunnarkarS.P. VijayananthanA. NgK.H. An integrated index for identification of fatty liver disease using radon transform and discrete cosine transform features in ultrasound images.Inf. Fusion201631435310.1016/j.inffus.2015.12.007
    [Google Scholar]
  36. KuppiliV. BiswasM. SreekumarA. SuriH.S. SabaL. EdlaD.R. MarinhoeR.T. SanchesJ.M. SuriJ.S. Extreme Learning Machine Framework for Risk Stratification of Fatty Liver Disease Using Ultrasound Tissue Characterization.J. Med. Syst.2017411015210.1007/s10916‑017‑0797‑128836045
    [Google Scholar]
  37. BiswasM. KuppiliV. EdlaD.R. SuriH.S. SabaL. MarinhoeR.T. SanchesJ.M. SuriJ.S. Symtosis: A liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm.Comput. Methods Programs Biomed.201815516517710.1016/j.cmpb.2017.12.01629512496
    [Google Scholar]
  38. AcharyaU.R. RaghavendraU. FujitaH. HagiwaraY. KohJ.E.W. Jen HongT. SudarshanV.K. VijayananthanA. YeongC.H. GudigarA. NgK.H. Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images.Comput. Biol. Med.20167925025810.1016/j.compbiomed.2016.10.02227825038
    [Google Scholar]
  39. WuJ.Y. TuomiA. BelandM.D. KonradJ. GliddenD. GrandD. MerckD. Quantitative analysis of ultrasound images for computer-aided diagnosis.J. Med. Imaging (Bellingham)20163101450110.1117/1.JMI.3.1.01450126835502
    [Google Scholar]
  40. MaoB. MaJ. DuanS. XiaY. TaoY. ZhangL. Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics.Eur. Radiol.20213174576458610.1007/s00330‑020‑07562‑633447862
    [Google Scholar]
  41. SahliH. SayadiM. RachdiR. Intelligent detection of fetal hydrocephalus.Comput. Methods Biomech. Biomed. Eng. Imaging Vis.20208664164810.1080/21681163.2020.1780156
    [Google Scholar]
  42. ChenC.Y. ChiouH.J. ChouY.H. ChiouS.Y. WangH.K. ChouS.Y. ChiangH.K. Computer-aided diagnosis of soft tissue tumors on high-resolution ultrasonography with geometrical and morphological features.Acad. Radiol.200916561862610.1016/j.acra.2008.12.01619345903
    [Google Scholar]
  43. KiaS. SetayeshiS. ShamsaeiM. KiaM. Computer-aided diagnosis (CAD) of the skin disease based on an intelligent classification of sonogram using neural network.Neural Comput. Appl.20132261049106210.1007/s00521‑012‑0864‑y
    [Google Scholar]
  44. AndrėkutėK. LinkevičiūtėG. RaišutisR. ValiukevičienėS. MakštienėJ. Automatic Differential Diagnosis of Melanocytic Skin Tumors Using Ultrasound Data.Ultrasound Med. Biol.201642122834284310.1016/j.ultrasmedbio.2016.07.02627637934
    [Google Scholar]
  45. KönigT. SteffenJ. RakM. NeumannG. von RohdenL. TönniesK.D. Ultrasound texture-based CAD system for detecting neuromuscular diseases.Int. J. CARS20151091493150310.1007/s11548‑014‑1133‑625451320
    [Google Scholar]
  46. BurlinaP. BillingsS. JoshiN. AlbaydaJ. Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods.PLoS One2017128e018405910.1371/journal.pone.018405928854220
    [Google Scholar]
  47. ChangR.F. LeeC.C. LoC.M. Computer-aided diagnosis of different rotator cuff lesions using shoulder musculoskeletal ultrasound.Ultrasound Med. Biol.20164292315232210.1016/j.ultrasmedbio.2016.05.01627381057
    [Google Scholar]
  48. LinB.S. ChenJ.L. TuY.H. ShihY.X. LinY.C. ChiW.L. WuY.C. Using Deep Learning in Ultrasound Imaging of Bicipital Peritendinous Effusion to Grade Inflammation Severity.IEEE J. Biomed. Health Inform.20202441037104510.1109/JBHI.2020.296881531985446
    [Google Scholar]
  49. ShrivastavaV.K. LondheN.D. SonawaneR.S. SuriJ.S. First review on psoriasis severity risk stratification: An engineering perspective.Comput. Biol. Med.201563526310.1016/j.compbiomed.2015.05.00526005793
    [Google Scholar]
  50. CzajkowskaJ. BaduraP. KorzekwaS. Płatkowska-SzczerekA. SłowińskaM. Deep learning-based high-frequency ultrasound skin image classification with multicriteria model evaluation.Sensors (Basel)20212117584610.3390/s2117584634502735
    [Google Scholar]
  51. TsantisS. DimitropoulosN. CavourasD. NikiforidisG. Morphological and wavelet features towards sonographic thyroid nodules evaluation.Comput. Med. Imaging Graph.2009332919910.1016/j.compmedimag.2008.10.01019111442
    [Google Scholar]
  52. MaJ. LuoS. DigheM. LimD.J. KimY. Differential diagnosis of thyroid nodules with ultrasound elastographybased on support vector machinesIEEE Ultrason. Symp.137213752010
    [Google Scholar]
  53. IakovidisD.K. KeramidasE.G. MaroulisD. Fusion of fuzzy statistical distributions for classification of thyroid ultrasound patterns.Artif. Intell. Med.2010501334110.1016/j.artmed.2010.04.00420427164
    [Google Scholar]
  54. ChangC.Y. ChenS.J. TsaiM.F. Application of support-vector-machine-based method for feature selection and classification of thyroid nodules in ultrasound images.Pattern Recognit.201043103494350610.1016/j.patcog.2010.04.023
    [Google Scholar]
  55. AcharyaU.R. FaustO. SreeS.V. MolinariF. GarberoglioR. SuriJ.S. Cost-effective and non-invasive automated benign and malignant thyroid lesion classification in 3D contrast-enhanced ultrasound using combination of wavelets and textures: a class of ThyroScan™ algorithms.Technol. Cancer Res. Treat.201110437138010.7785/tcrt.2012.50021421728394
    [Google Scholar]
  56. AcharyaU.R. FaustO. SreeS.V. MolinariF. SuriJ.S. ThyroScreen system: High resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform.Comput. Methods Programs Biomed.2012107223324110.1016/j.cmpb.2011.10.00122054816
    [Google Scholar]
  57. Rajendra AcharyaU. Vinitha SreeS. Muthu Rama KrishnanM. MolinariF. GarberoglioR. SuriJ.S. Non-invasive automated 3D thyroid lesion classification in ultrasound: A class of ThyroScan™ systems.Ultrasonics201252450852010.1016/j.ultras.2011.11.00322154208
    [Google Scholar]
  58. AcharyaU.R. SreeS.V. SwapnaG. GuptaS. MolinariF. GarberoglioR. WitkowskaA. SuriJ.S. Effect of complex wavelet transform filter on thyroid tumor classification in three-dimensional ultrasound.Proc. Inst. Mech. Eng. H2013227328429210.1177/095441191247242223662344
    [Google Scholar]
  59. ChiJ. WaliaE. BabynP. WangJ. GrootG. EramianM. Thyroid Nodule Classification in Ultrasound Images by Fine-Tuning Deep Convolutional Neural Network.J. Digit. Imaging201730447748610.1007/s10278‑017‑9997‑y28695342
    [Google Scholar]
  60. RaghavendraU. Optimized multi-level elongated quinary patterns for the assessment of thyroid nodules in ultrasound images.Comput. Biol. Med.201895556210.1016/j.compbiomed.2018.02.002
    [Google Scholar]
  61. LiD. ZhangY. DuL. ZhouX. ShenY. Texture analysis and classification of diffuse thyroid diseases based on ultrasound images.I2MTC 2018 - 2018 IEEE Int. Instrum. Meas. Technol. Conf. Discov. New Horizons Instrum. Meas. Proc.20186150114116
    [Google Scholar]
  62. GerkeS. MinssenT. CohenG. Ethical and legal challenges of artificial intelligence-driven healthcare.Artificial Intelligence in Healthcare202029533610.1016/B978‑0‑12‑818438‑7.00012‑5
    [Google Scholar]
  63. ChanH.P. HadjiiskiL.M. SamalaR.K. Computer‐aided diagnosis in the era of deep learning.Med. Phys.2020475e218e22710.1002/mp.1376432418340
    [Google Scholar]
  64. PeroneC.S. Cohen-AdadJ. Promises and limitations of deep learning for medical image segmentation.J. Med. Artif. Intell.20192110.21037/jmai.2019.01.01
    [Google Scholar]
  65. GhassemiM. NaumannT. SchulamP. BeamA.L. ChenI.Y. RanganathR. A Review of Challenges and Opportunities in Machine Learning for Health.AMIA Jt. Summits Transl. Sci. Proc.2020202019120032477638
    [Google Scholar]
  66. El-saidS.A. AzarA.T. Speckles Suppression Techniques for Ultrasound Images.J. Med. Imaging Radiat. Sci.201243420021310.1016/j.jmir.2012.06.00131052006
    [Google Scholar]
  67. GuptaM. TanejaH. ChandL. Performance enhancement and analysis of filters in ultrasound image denoising.Procedia Comput. Sci.201813264365210.1016/j.procs.2018.05.063
    [Google Scholar]
  68. ArnalJ. MayzelI. Parallel techniques for speckle noise reduction in medical ultrasound images.Adv. Eng. Softw.202014810286710.1016/j.advengsoft.2020.102867
    [Google Scholar]
  69. SinghK. SharmaB. SinghJ. SrivastavaG. SharmaS. AggarwalA. ChengX. Local statistics-based speckle reducing bilateral filter for medical ultrasound images.Mob. Netw. Appl.20202562367238910.1007/s11036‑020‑01615‑2
    [Google Scholar]
  70. KaurP. SinghG. KaurP. A review of denoising medical images using machine learning approaches.Curr. Med. Imaging Rev.201814567568510.2174/157340561366617042815415630532667
    [Google Scholar]
  71. Mohd SagheerS.V. GeorgeS.N. A review on medical image denoising algorithms.Biomed. Signal Process. Control20206110203610.1016/j.bspc.2020.102036
    [Google Scholar]
  72. TianC. FeiL. ZhengW. XuY. ZuoW. LinC.W. Deep learning on image denoising: An overview.Neural Netw.202013125127510.1016/j.neunet.2020.07.02532829002
    [Google Scholar]
  73. Duarte-SalazarC.A. Castro-OspinaA.E. BecerraM.A. Delgado-TrejosE. Speckle noise reduction in ultrasound images for improving the metrological evaluation of biomedical applications: An overview.IEEE Access20208159831599910.1109/ACCESS.2020.2967178
    [Google Scholar]
  74. SzaboT.L. LewinP.A. Ultrasound transducer selection in clinical imaging practice.J. Ultrasound Med.201332457358210.7863/jum.2013.32.4.57323525382
    [Google Scholar]
  75. LeeW. RohY. Ultrasonic transducers for medical diagnostic imaging.Biomed. Eng. Lett.201772919710.1007/s13534‑017‑0021‑830603155
    [Google Scholar]
  76. von RammO.T. SmithS.W. Prospects And Limitations Of Diagnostic Ultrasound. Proc. SPIE 0206.Rec Fut Develop Med Imaging1979II61810.1117/12.958184
    [Google Scholar]
  77. https://en.wikipedia.org/wiki/Medical_ultrasound
  78. KhandpurR.S. Biomedical Instrumentation: Technology and Applications.1st edIndiaMc-Graw Hill Education2004
    [Google Scholar]
/content/journals/cmir/10.2174/1573405619666230306101012
Loading
/content/journals/cmir/10.2174/1573405619666230306101012
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test