Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Objective

This study aimed to assess the response of combretastatin-A4-phosphate (CA4P) in rabbit VX2 liver tumors using intravoxel incoherent motion diffusion-weighted MRI (IVIM DW-MRI).

Methods

Forty rabbits with implanted VX2 liver tumors underwent baseline MRI and were then given 10 mg/kg CA4P (n=20) or saline (n=20). After 4 h, 10 rabbits from each group underwent an MRI examination and were then sacrificed. The remaining rabbits underwent MRI after 1, 3, and 7 days and were then sacrificed. Liver samples were processed for H&E and immunohistochemical staining. IVIM parameters () were compared in the treatment and control groups, and the correlations of IVIM parameters with microvascular density (MVD) were determined.

Results

At 4 h, the two treatment groups had significantly different and values (<0.001), and these values were at their minimum in the treatment group. The treatment group had moderate correlations between MVD and at 4 h (=0.676, =0.032) and 7 days (=0.656, =0.039) and with at 4 h (=0.732, =0.016) and 7 days (=0.748, =0.013), but no correlation was reported between MVD and or in the control group (all >0.05).

Conclusion

IVIM DW-MRI is a sensitive imaging technique. It successfully evaluated the effect of CA4P on VX2 liver tumors in rabbits. The and values correlated with MVD at 4 h and 7 days after using CA4P, indicating that these parameters have the potential to be used as indicators of tumor angiogenesis after treatment.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405619666230306110835
2023-04-27
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e060323214365.html?itemId=/content/journals/cmir/10.2174/1573405619666230306110835&mimeType=html&fmt=ahah

References

  1. ÖzA. ServerS. Koyuncu SökmenB. NamalE. İnanN. BalcıN.C. Intravoxel incoherent motion of colon cancer liver metastases for the assessment of response to antiangiogenic treatment: Results from a pilot study.Med. Princ. Pract.202029542943510.1159/00050581431914438
    [Google Scholar]
  2. Abou ElkassemA.M. LoS.S. GunnA.J. ShuchB.M. Dewitt-FoyM.E. AbouassalyR. VaidyaS.S. ClarkJ.I. LouieA.V. SivaS. GrosuA.L. SmithA.D. Role of imaging in renal cell carcinoma: A multidisciplinary perspective.Radiographics20214151387140710.1148/rg.202120020234270355
    [Google Scholar]
  3. ChenJ. QianT. ZhangH. WeiC. MengF. YinH. Combining dynamic contrast enhanced magnetic resonance imaging and microvessel density to assess the angiogenesis after PEI in a rabbit VX2 liver tumor model.Magn. Reson. Imaging201634217718210.1016/j.mri.2015.10.01326518059
    [Google Scholar]
  4. QianT. ChenM. GaoF. MengF. GaoX. YinH. Diffusion-weighted magnetic resonance imaging to evaluate microvascular density after transarterial embolization ablation in a rabbit VX2 liver tumor model.Magn. Reson. Imaging20143281052105710.1016/j.mri.2014.05.01124970024
    [Google Scholar]
  5. ShiY. OehJ. HitzA. HedehusM. Eastham-AndersonJ. PealeF.V.Jr HamiltonP. O’BrienT. SampathD. CaranoR.A.D. Monitoring and targeting Anti-VEGF induced hypoxia within the viable tumor by 19 F–MRI and multispectral analysis.Neoplasia2017191195095910.1016/j.neo.2017.07.01028987998
    [Google Scholar]
  6. FeracoP. ScartoniD. PorrettiG. PertileR. DonnerD. PicoriL. AmelioD. Predict treatment response by magnetic resonance diffusion weighted imaging: A preliminary study on 46 meningiomas treated with proton-therapy.Diagnostics2021119168410.3390/diagnostics1109168434574025
    [Google Scholar]
  7. Le BihanD. BretonE. LallemandD. AubinM.L. VignaudJ. Laval-JeantetM. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging.Radiology1988168249750510.1148/radiology.168.2.33936713393671
    [Google Scholar]
  8. Le BihanDJ Differentiation of benign versus pathologic compression fractures with diffusion-weighted MR imaging: A closer step toward the "holy grail" of tissue characterization?Radiology19982072305307
    [Google Scholar]
  9. LeeH.J. RhaS.Y. ChungY.E. ShimH.S. KimY.J. HurJ. HongY.J. ChoiB.W. Tumor perfusion-related parameter of diffusion-weighted magnetic resonance imaging: Correlation with histological microvessel density.Magn. Reson. Med.20147141554155810.1002/mrm.2481023798038
    [Google Scholar]
  10. DolciamiM. CapuaniS. CelliV. MaiuroA. PernazzaA. PalaiaI. Di DonatoV. SantangeloG. RizzoS.M.R. RicciP. Della RoccaC. CatalanoC. ManganaroL. Intravoxel Incoherent Motion (IVIM) MR Quantification in Locally Advanced Cervical Cancer (LACC): Preliminary study on assessment of tumor aggressiveness and response to neoadjuvant chemotherapy.J. Pers. Med.202212463810.3390/jpm1204063835455755
    [Google Scholar]
  11. JooI. LeeJ.M. HanJ.K. ChoiB.I. Intravoxel incoherent motion diffusion-weighted MR imaging for monitoring the therapeutic efficacy of the vascular disrupting agent CKD-516 in rabbit VX2 liver tumors.Radiology2014272241742610.1148/radiol.1413116524697148
    [Google Scholar]
  12. Xiao-pingY. JingH. Fei-pingL. YinH. QiangL. LanlanW. WeiW. Intravoxel incoherent motion MRI for predicting early response to induction chemotherapy and chemoradiotherapy in patients with nasopharyngeal carcinoma.J. Magn. Reson. Imaging20164351179119010.1002/jmri.2507526540374
    [Google Scholar]
  13. KarayamaM. YoshizawaN. SugiyamaM. MoriK. YasuiH. HozumiH. SuzukiY. FuruhashiK. FujisawaT. EnomotoN. NakamuraY. InuiN. GoshimaS. SudaT. TakeharaY. Intravoxel incoherent motion magnetic resonance imaging for predicting the long-term efficacy of immune checkpoint inhibitors in patients with non-small-cell lung cancer.Lung Cancer2020143475410.1016/j.lungcan.2020.03.01332203770
    [Google Scholar]
  14. GaronE.B. NeidhartJ.D. GabrailN.Y. de OliveiraM.R. BalkissoonJ. KabbinavarF. A randomized Phase II trial of the tumor vascular disrupting agent CA4P (fosbretabulin tromethamine) with carboplatin, paclitaxel, and bevacizumab in advanced nonsquamous non-small-cell lung cancer.OncoTargets Ther.201697275728310.2147/OTT.S10918627942221
    [Google Scholar]
  15. ZweifelM. JaysonG.C. ReedN.S. OsborneR. HassanB. LedermannJ. ShreevesG. PoupardL. LuS.P. BalkissoonJ. ChaplinD.J. RustinG.J.S. Phase II trial of combretastatin A4 phosphate, carboplatin, and paclitaxel in patients with platinum-resistant ovarian cancer.Ann. Oncol.20112292036204110.1093/annonc/mdq70821273348
    [Google Scholar]
  16. ShiC LiuD XiaoZ Monitoring tumor response to antivascular therapy using non-contrast intravoxel incoherent motion diffusion-weighted MRI.Cancer research201777133491350110.1158/0008‑5472.CAN‑16‑2499
    [Google Scholar]
  17. ChengJ. WangY. ZhangC.F. WangH. WuW.Z. PanF. HongN. DengJ. Chemotherapy response evaluation in a mouse model of gastric cancer using intravoxel incoherent motion diffusion-weighted MRI and histopathology.World J. Gastroenterol.201723111990200110.3748/wjg.v23.i11.199028373765
    [Google Scholar]
  18. LiuY. De KeyzerF. WangY. WangF. FengY. ChenF. YuJ. LiuJ. SongS. SwinnenJ. BormansG. OyenR. HuangG. NiY. The first study on therapeutic efficacies of a vascular disrupting agent CA4P among primary hepatocellular carcinomas with a full spectrum of differentiation and vascularity: Correlation of MRI-microangiography-histopathology in rats.Int. J. Cancer201814371817182810.1002/ijc.3156729707770
    [Google Scholar]
  19. LiuY. GuanQ. KongX. De KeyzerF. FengY. ChenF. YuJ. LiuJ. SongS. van PeltJ. SwinnenJ. BormansG. OyenR. WangS. HuangG. NiY. LiY. Predicting therapeutic efficacy of vascular disrupting agent CA4P in rats with liver tumors by hepatobiliary contrast agent Mn-DPDP-enhanced MRI.Transl. Oncol.20201319210110.1016/j.tranon.2019.09.01031810003
    [Google Scholar]
  20. ShaoH. NiY. ZhangJ. ChenF. DaiX. FanG. SunZ. XuK. Dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging noninvasive evaluation of vascular disrupting treatment on rabbit liver tumors.PLoS One2013812e8264910.1371/journal.pone.008264924376560
    [Google Scholar]
  21. ShaoH. NiY. DaiX. ZhangJ. ChenF. FanG. SunZ. LiY. ZhouH. XuK. Diffusion-weighted MR imaging allows monitoring the effect of combretastatin A4 phosphate on rabbit implanted VX2 tumor model: 12-Day dynamic results.Eur. J. Radiol.201281357858310.1016/j.ejrad.2011.03.00921454029
    [Google Scholar]
  22. WeidnerN. Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors.Breast Cancer Res. Treat.199536216918010.1007/BF006660388534865
    [Google Scholar]
  23. ThoenyHC De KeyzerF VandecaveyeV Effect of vascular targeting agent in rat tumor model: Dynamic contrast-enhanced versus diffusion-weighted MR imaging.Radiology2005237249249910.1148/radiol.2372041638
    [Google Scholar]
  24. Le BihanD. BretonE. LallemandD. GrenierP. CabanisE. Laval-JeantetM. MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders.Radiology1986161240140710.1148/radiology.161.2.37639093763909
    [Google Scholar]
  25. LuoJ. ZhouK. ZhangB. LuoN. BianJ. Intravoxel incoherent motion diffusion-weighted imaging for evaluation of the cell density and angiogenesis of cirrhosis-related nodules in an experimental rat model: Comparison and correlation with dynamic contrast-enhanced MRI.J. Magn. Reson. Imaging202051381282310.1002/jmri.2684531245888
    [Google Scholar]
  26. LiY. WangZ. ChenF. QinX. LiC. ZhaoY. YanC. WuY. HaoP. XuY. Intravoxel incoherent motion diffusion-weighted MRI in patients with breast cancer: Correlation with tumor stroma characteristics.Eur. J. Radiol.201912010868610.1016/j.ejrad.2019.10868631586850
    [Google Scholar]
  27. NoijD.P. MartensR.M. MarcusJ.T. de BreeR. LeemansC.R. CastelijnsJ.A. de JongM.C. de GraafP. Intravoxel incoherent motion magnetic resonance imaging in head and neck cancer: A systematic review of the diagnostic and prognostic value.Oral Oncol.201768819110.1016/j.oraloncology.2017.03.01628438298
    [Google Scholar]
  28. LiangC.Y. ChenM.D. ZhaoX.X. YanC.G. MeiY.J. XuY.K. Multiple mathematical models of diffusion-weighted magnetic resonance imaging combined with prognostic factors for assessing the response to neoadjuvant chemotherapy and radiation therapy in locally advanced rectal cancer.Eur. J. Radiol.201911024925510.1016/j.ejrad.2018.12.00530599868
    [Google Scholar]
  29. MürtzP. PennerA.H. PfeifferA.K. SprinkartA. PieperC. KönigR. BlockW. SchildH. WillinekW. KukukG. Intravoxel incoherent motion model–based analysis of diffusion-weighted magnetic resonance imaging with 3 b-values for response assessment in locoregional therapy of hepatocellular carcinoma.OncoTargets Ther.201696425643310.2147/OTT.S11390927799790
    [Google Scholar]
  30. PriseV. HonessD. StratfordM. WilsonJ. TozerG. The vascular response of tumor and normal tissues in the rat to the vascular targeting agent, combretastatin A-4-phosphate, at clinically relevant doses.Int. J. Oncol.200221471772610.3892/ijo.21.4.71712239609
    [Google Scholar]
  31. KanthouC. TozerG.M. Microtubule depolymerizing vascular disrupting agents: Novel therapeutic agents for oncology and other pathologies.Int. J. Exp. Pathol.200990328429410.1111/j.1365‑2613.2009.00651.x19563611
    [Google Scholar]
  32. WangH. ConaM.M. ChenF. YuJ. FengY. LiJ. De KeyzerF. MarchalG. NiY. Comparison of two vascular-disrupting agents at a clinically relevant dose in rodent liver tumors with multiparametric magnetic resonance imaging biomarkers.Anticancer Drugs2012231122110.1097/CAD.0b013e328349dd6021857503
    [Google Scholar]
  33. Le BihanD. What can we see with IVIM MRI?Neuroimage2019187566710.1016/j.neuroimage.2017.12.06229277647
    [Google Scholar]
  34. YuanY ZengD ZhangY Intravoxel incoherent motion diffusion-weighted imaging assessment of microvascular characteristics in the murine embryonal rhabdomyosarcoma model.Acta radiologica (Stockholm, Sweden : 1987)202061226026610.1177/0284185119855731
    [Google Scholar]
  35. SongX. WangL. RenH. WeiR. RenJ.L. NiuJ. Intravoxel incoherent motion imaging in differentiation borderline from malignant ovarian epithelial tumors: Correlation With histological cell proliferation and vessel characteristics.J. Magn. Reson. Imaging202051392893510.1002/jmri.2688531373117
    [Google Scholar]
  36. MitaM.M. SargsyanL. MitaA.C. SpearM. Vascular-disrupting agents in oncology.Expert Opin. Investig. Drugs201322331732810.1517/13543784.2013.75955723316880
    [Google Scholar]
/content/journals/cmir/10.2174/1573405619666230306110835
Loading
/content/journals/cmir/10.2174/1573405619666230306110835
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test