Skip to content
2000
Volume 15, Issue 7
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background and Objective: Capsule Endoscopy (CE) is a non-invasive, patient-friendly alternative to conventional endoscopy procedure. However, CE produces 6 to 8 hrs long video posing a tedious challenge to a gastroenterologist for abnormality detection. Major challenges to an expert are lengthy videos, need of constant concentration and subjectivity of the abnormality. To address these challenges along with high diagnostic accuracy, design and development of automated abnormality detection system is a must. Machine learning and computer vision techniques are devised to develop such automated systems. Methods: Study presents a review of quality research papers published in IEEE, Scopus, and Science Direct database with search criteria as capsule endoscopy, engineering, and journal papers. The initial search retrieved 144 publications. After evaluating all articles, 62 publications pertaining to image analysis are selected. Results: This paper presents a rigorous review comprising all the aspects of medical image analysis concerning capsule endoscopy namely video summarization and redundant image elimination, Image enhancement and interpretation, segmentation and region identification, Computer-aided abnormality detection in capsule endoscopy, Image and video compression. The study provides a comparative analysis of various approaches, experimental setup, performance, strengths, and limitations of the aspects stated above. Conclusions: The analyzed image analysis techniques for capsule endoscopy have not yet overcome all current challenges mainly due to lack of dataset and complex nature of the gastrointestinal tract.

Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405614666181102152434
2019-08-01
2025-07-08
Loading full text...

Full text loading...

/content/journals/cmir/10.2174/1573405614666181102152434
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test