Skip to content
2000
Volume 16, Issue 4
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background: Considering the increasing volume of text document information on Internet pages, dealing with such a tremendous amount of knowledge becomes totally complex due to its large size. Text clustering is a common optimization problem used to manage a large amount of text information into a subset of comparable and coherent clusters. Aims: This paper presents a novel local clustering technique, namely, β-hill climbing, to solve the problem of the text document clustering through modeling the β-hill climbing technique for partitioning the similar documents into the same cluster. Methods: The β parameter is the primary innovation in β-hill climbing technique. It has been introduced in order to perform a balance between local and global search. Local search methods are successfully applied to solve the problem of the text document clustering such as; k-medoid and kmean techniques. Results: Experiments were conducted on eight benchmark standard text datasets with different characteristics taken from the Laboratory of Computational Intelligence (LABIC). The results proved that the proposed β-hill climbing achieved better results in comparison with the original hill climbing technique in solving the text clustering problem. Conclusion: The performance of the text clustering is useful by adding the β operator to the hill climbing.

Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405614666180903112541
2020-05-01
2025-06-23
Loading full text...

Full text loading...

/content/journals/cmir/10.2174/1573405614666180903112541
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test