Skip to content
2000
Volume 14, Issue 2
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background: Ultrasound imaging is widely used for tumor detection and diagnosis. Feature extraction plays a critical role in the ultrasound-based computer-aided diagnosis system. Deep Polynomial Network (DPN) is a newly proposed deep learning algorithm, which also has the potential to learn for excellent representation from small dataset. Discussion: However, the final feature representation of DPN is the simple concatenation of the learned hierarchical features from different network layers, which essentially loses some properties exhibited by different network layers, and depresses the representative performance. Since the hierarchical features in DPN can be regarded as heterogeneous multi-view features, they can be effectively integrated by Multiple Kernel Learning (MKL) methods. Conclusion: In this work, we proposed a DPN and MKL based feature learning and classification framework (DPN-MKL) for ultrasound image based tumor diagnosis. The experimental results on breast ultrasound image dataset and prostate ultrasound image dataset show that DPN algorithm has superior performance to the commonly used deep learning algorithms, while the proposed DPNMKL framework outperforms all the single-view feature based algorithms.

Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405613666170504154453
2018-04-01
2025-06-22
Loading full text...

Full text loading...

/content/journals/cmir/10.2174/1573405613666170504154453
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test