Skip to content
2000
Volume 14, Issue 5
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background: This paper attempts to identify suitable Machine Learning (ML) approach for image denoising of radiology based medical application. The Identification of ML approach is based on (i) Review of ML approach for denoising (ii) Review of suitable Medical Denoising approach. Discussion: The review focuses on six application of radiology: Medical Ultrasound (US) for fetus development, US Computer Aided Diagnosis (CAD) and detection for breast, skin lesions, brain tumor MRI diagnosis, X-Ray for chest analysis, Breast cancer using MRI imaging. This survey identifies the ML approach with better accuracy for medical diagnosis by radiologists. The image denoising approaches further includes basic filtering techniques, wavelet medical denoising, curvelet and optimization techniques. In most of the applications, the machine learning performance is better than the conventional image denoising techniques. For fast and computational results the radiologists are using the machine learning methods on MRI, US, X-Ray and Skin lesion images. The characteristics and contributions of different ML approaches are considered in this paper. Conclusion: The problem faced by the researchers during image denoising techniques and machine learning applications for clinical settings have also been discussed.

Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405613666170428154156
2018-10-01
2025-06-23
Loading full text...

Full text loading...

/content/journals/cmir/10.2174/1573405613666170428154156
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test