Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Objective

This study aimed to develop an automated method for segmenting spleen computed tomography (CT) images using a deep learning model to address the limitations of manual segmentation, which is known to be susceptible to inter-observer variability. Subsequently, a prediction model for gastric cancer (GC) differentiation was constructed alongside radiomics, and a nomogram was generated to investigate its clinical guiding significance.

Methods

This study enrolled 262 patients with pathologically confirmed GC. We employed a deep learning model, U-Mamba, to achieve fully automated segmentation of the spleen CT images. Subsequently, radiomic features were extracted from the entire spleen CT images, and significant features were identified through dimensionality reduction. The clinical and radiomic features were permuted and combined to create three predictive models: the CL model, the RA model, and the CR model. Finally, the model with superior performance was represented as a nomogram.

Results

A total of 30 radiomic features and 1 clinical feature were considered valuable through dimensionality reduction and selection. The RA model demonstrated greater discriminative power than both the CR model and the CL model. A nomogram based on the logistic clinical model was created to facilitate the application and validation of the clinical model.

Conclusion

The radiomic features obtained through the automated segmentation of the spleen using deep learning demonstrate efficacy in predicting the degree of differentiation in GC. These features offer valuable guidance for clinical decision-making in the form of a nomogram.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056349216241118115005
2024-01-01
2025-04-22
The full text of this item is not currently available.

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834
    [Google Scholar]
  2. ZavrosY. MerchantJ.L. The immune microenvironment in gastric adenocarcinoma.Nat. Rev. Gastroenterol. Hepatol.202219745146710.1038/s41575‑022‑00591‑0
    [Google Scholar]
  3. FengF. LiuJ. WangF. ZhengG. WangQ. LiuS. XuG. GuoM. LianX. ZhangH. Prognostic value of differentiation status in gastric cancer.BMC Cancer201818186510.1186/s12885‑018‑4780‑0
    [Google Scholar]
  4. LambinP. Rios-VelazquezE. LeijenaarR. CarvalhoS. van StiphoutR.G.P.M. GrantonP. ZegersC.M.L. GilliesR. BoellardR. DekkerA. AertsH.J.W.L. Radiomics: Extracting more information from medical images using advanced feature analysis.Eur. J. Cancer201248444144610.1016/j.ejca.2011.11.036
    [Google Scholar]
  5. LarueR.T.H.M. DefraeneG. De RuysscherD. LambinP. van ElmptW. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures.Br. J. Radiol.20179010702016066510.1259/bjr.20160665
    [Google Scholar]
  6. KumarV. GuY. BasuS. BerglundA. EschrichS.A. SchabathM.B. ForsterK. AertsH.J.W.L. DekkerA. FenstermacherD. GoldgofD.B. HallL.O. LambinP. BalagurunathanY. GatenbyR.A. GilliesR.J. Radiomics: The process and the challenges.Magn. Reson. Imaging20123091234124810.1016/j.mri.2012.06.010
    [Google Scholar]
  7. JooM. KimK.M. Histologic discrepancy between gastric biopsy and resection specimen in the era of endoscopic treatment for early gastric cancer.Korean J. Gastroenterol.201464525625910.4166/kjg.2014.64.5.256
    [Google Scholar]
  8. GilliesR.J. KinahanP.E. HricakH. Radiomics: Images are more than pictures, they are data.Radiology2016278256357710.1148/radiol.2015151169
    [Google Scholar]
  9. Curovic RotbainE. Lund HansenD. Schaffalitzky de MuckadellO. WibrandF. Meldgaard LundA. FrederiksenH. Splenomegaly – Diagnostic validity, work-up, and underlying causes.PLoS One20171211e018667410.1371/journal.pone.0186674
    [Google Scholar]
  10. MengruL. CT Findings of spleen for predicting differentiation degree of advanced gastric adenocarcinoma.Chin. J. Med. Imaging Technol.20244003392396
    [Google Scholar]
  11. LimkinE.J. SunR. DercleL. ZacharakiE.I. RobertC. ReuzéS. SchernbergA. ParagiosN. DeutschE. FertéC. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology.Ann. Oncol.20172861191120610.1093/annonc/mdx034
    [Google Scholar]
  12. ZhanP. YangS. LiuX. ZhangY. WangR. WangJ. QiuQ. GaoY. LvD. LiL. LuoC. HuZ. LiZ. LyuP. LiangP. GaoJ. A radiomics signature derived from CT imaging to predict MSI status and immunotherapy outcomes in gastric cancer: A multi-cohort study.BMC Cancer202424140410.1186/s12885‑024‑12174‑0
    [Google Scholar]
  13. WangX.X. DingY. WangS.W. DongD. LiH-L. ChenJ. HuH. LuC. TianJ. ShanX-H. Intratumoral and peritumoral radiomics analysis for preoperative Lauren classification in gastric cancer.Cancer Imaging20202018310.1186/s40644‑020‑00358‑3
    [Google Scholar]
  14. RonnebergerO. FischerP. BroxT. Convolutional networks for biomedical image segmentation. Paper presented at: Medical image computing and computer-assisted intervention–MICCAIMICCAI 2015: 18th international conference,Munich, Germany, October 5-9, 2015, part III 182015.
    [Google Scholar]
  15. ZengQ. FengZ. ZhuY. ZhangY. ShuX. WuA. LuoL. CaoY. XiongJ. LiH. ZhouF. JieZ. TuY. LiZ. Deep learning model for diagnosing early gastric cancer using preoperative computed tomography images.Front. Oncol.202212106593410.3389/fonc.2022.1065934
    [Google Scholar]
  16. CuiY ZhangJ LiZ A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: A multicenter cohort study.EClinicalMedicine202246101348
    [Google Scholar]
  17. RizzoS. BottaF. RaimondiS. OriggiD. FanciulloC. MorgantiA.G. BellomiM. Radiomics: The facts and the challenges of image analysis.Eur. Radiol. Exp.2018213610.1186/s41747‑018‑0068‑z
    [Google Scholar]
  18. LiuR. ElhalawaniH. Radwan MohamedA.S. ElgohariB. CourtL. ZhuH. FullerC.D. Stability analysis of CT radiomic features with respect to segmentation variation in oropharyngeal cancer.Clin. Transl. Radiat. Oncol.202021111810.1016/j.ctro.2019.11.005
    [Google Scholar]
  19. ParmarC. Rios VelazquezE. LeijenaarR. JermoumiM. CarvalhoS. MakR.H. MitraS. ShankarB.U. KikinisR. Haibe-KainsB. LambinP. AertsH.J.W.L. Robust radiomics feature quantification using semiautomatic volumetric segmentation.PLoS One20149710210710.1371/journal.pone.0102107
    [Google Scholar]
  20. MeddebA. KossenT. BressemK.K. MolinskiN. HammB. NagelS.N. Two-stage deep learning model for automated segmentation and classification of splenomegaly.Cancers20221422547610.3390/cancers14225476
    [Google Scholar]
  21. LiJ. DongD. FangM. WangR. TianJ. LiH. GaoJ. Dual-energy CT–based deep learning radiomics can improve lymph node metastasis risk prediction for gastric cancer.Eur. Radiol.20203042324233310.1007/s00330‑019‑06621‑x
    [Google Scholar]
  22. WangL. LvP. XueZ. ChenL. ZhengB. LinG. LinW. ChenJ. XieJ. DuanQ. LuJ. Novel CT based clinical nomogram comparable to radiomics model for identification of occult peritoneal metastasis in advanced gastric cancer.Eur. J. Surg. Oncol.202248102166217310.1016/j.ejso.2022.06.034
    [Google Scholar]
  23. MaJ. Available from https://github.com/bowang-lab/U-Mamba?tab=readme-ov-file
  24. MaJ. LiF. WangB. U-mamba: Enhancing long-range dependency for biomedical image segmentation.arXiv:2401047222024
    [Google Scholar]
  25. van GriethuysenJ.J.M. FedorovA. ParmarC. HosnyA. AucoinN. NarayanV. Beets-TanR.G.H. Fillion-RobinJ-C. PieperS. AertsH.J.W.L. Computational radiomics system to decode the radiographic phenotype.Cancer Res.20177721e104e10710.1158/0008‑5472.CAN‑17‑0339
    [Google Scholar]
  26. ZwanenburgA. VallièresM. AbdalahM.A. AertsH.J.W.L. AndrearczykV. ApteA. AshrafiniaS. BakasS. BeukingaR.J. BoellaardR. BogowiczM. BoldriniL. BuvatI. CookG.J.R. DavatzikosC. DepeursingeA. DesseroitM-C. DinapoliN. DinhC.V. EchegarayS. El NaqaI. FedorovA.Y. GattaR. GilliesR.J. GohV. GötzM. GuckenbergerM. HaS.M. HattM. IsenseeF. LambinP. LegerS. LeijenaarR.T.H. LenkowiczJ. LippertF. LosnegårdA. Maier-HeinK.H. MorinO. MüllerH. NapelS. NiocheC. OrlhacF. PatiS. PfaehlerE.A.G. RahmimA. RaoA.U.K. SchererJ. SiddiqueM.M. SijtsemaN.M. Socarras FernandezJ. SpeziE. SteenbakkersR.J.H.M. Tanadini-LangS. ThorwarthD. TroostE.G.C. UpadhayaT. ValentiniV. van DijkL.V. van GriethuysenJ. van VeldenF.H.P. WhybraP. RichterC. LöckS. The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping.Radiology2020295232833810.1148/radiol.2020191145
    [Google Scholar]
  27. Van CalsterB. WynantsL. VerbeekJ.F.M. VerbakelJ.Y. ChristodoulouE. VickersA.J. RoobolM.J. SteyerbergE.W. Reporting and interpreting decision curve analysis: A guide for investigators.Eur. Urol.201874679680410.1016/j.eururo.2018.08.038
    [Google Scholar]
  28. TangX LiY QianW-L HanP-L YanW-F Enhancing intracranial efficacy prediction of osimertinib in non-small cell lung cancer: A novel approach through brain MRI radiomics.Front Neurol2024151399983
    [Google Scholar]
  29. ChenQ. ZhangL. LiuS. YouJ. ChenL. JinZ. ZhangS. ZhangB. Radiomics in precision medicine for gastric cancer: Opportunities and challenges.Eur. Radiol.20223295852586810.1007/s00330‑022‑08704‑8
    [Google Scholar]
  30. YangY. ChenH. JiM. WuJ. ChenX. LiuF. RaoS. A new radiomics approach combining the tumor and peri-tumor regions to predict lymph node metastasis and prognosis in gastric cancer.Gastroenterol. Rep. (Oxf.)2022118010.1093/gastro/goac080
    [Google Scholar]
  31. LyuD. LiangP. HuangC. ChenX. ChengM. ZhuB. LiuM. YueS. GaoJ. Are radiomic spleen features useful for assessing the differentiation status of advanced gastric cancer?Front. Oncol.202313116760210.3389/fonc.2023.1167602
    [Google Scholar]
  32. ParkJ JooI JeonSK KimJ-M ParkSJ YoonSHJAR Automated abdominal organ segmentation algorithms for non-enhanced CT for volumetry and 3D radiomics analysis.Abdom Radiol202419
    [Google Scholar]
  33. PrinziF MilitelloC ZarcaroC BartolottaTV GaglioS Rad4XCNN: A new agnostic method for post-hoc global explanation of CNN-derived features by means of radiomics.arXiv:2405.023342024
    [Google Scholar]
  34. BoboM.F. BaoS. HuoY. Fully convolutional neural networks improve abdominal organ segmentation.Med. Imaging2018
    [Google Scholar]
  35. XieY. ZhangJ. XiaY. ShenC. Learning from partially labeled data for multi-organ and tumor segmentation.IEEE Trans. Pattern Anal. Mach. Intell.20234512149051491910.1109/TPAMI.2023.3312587
    [Google Scholar]
  36. DennisJ.L. HvidstenT.R. WitE.C. KomorowskiJ. BellA.K. DownieI. MooneyJ. VerbekeC. BellamyC. KeithW.N. OienK.A. Markers of adenocarcinoma characteristic of the site of origin: development of a diagnostic algorithm.Clin. Cancer Res.200511103766377210.1158/1078‑0432.CCR‑04‑2236
    [Google Scholar]
  37. MaM GuW LiangY A novel model for predicting postoperative liver metastasis in R0 resected pancreatic neuroendocrine tumors: Integrating computational pathology and deep learning-radiomics.J Transl Med.202422176810.1186/s12967‑024‑05449‑4
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056349216241118115005
Loading
/content/journals/cmir/10.2174/0115734056349216241118115005
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test