Skip to content
2000
image of The Value of Using Quantitative MRI based on Synthetic Acquisition and Apparent Diffusion Coefficient to Monitor Multiple Sclerosis Lesion Activity

Abstract

Background:

Multiple sclerosis (MS) is one of the most common disabling central nervous system diseases affecting young adults. Magnetic resonance imaging (MRI) is an essential tool for diagnosing and following up multiple sclerosis. Over the years, many MRI techniques have been developed to improve the sensitivity of MS disease detection. In recent years synthetic MRI (sMRI) and quantitative MRI (qMRI) have gained traction in neuroimaging applications, providing more detailed information than traditional acquisition methods. These techniques enable the detection of microstructural changes in the brain with high sensitivity and robustness to inter-scanner and inter-observer variability. This study aims to evaluate the feasibility of using these techniques to avoid administering intravenous gadolinium-based contrast agents (GBCAs) for assessing MS disease activity and monitoring.

Materials and Methods:

Forty-two known MS patients, aged 20 to 45, were scanned as part of their routine follow-up. MAGnetic resonance image Compilation (MAGiC) sequence, an implementation of synthetic MRI, was added to our institute's routine MS protocol to automatically generate quantitative maps of T1, T2, and PD. T1, T2, PD, and apparent diffusion coefficient (ADC) data were collected from regions of interest (ROIs) representing normal-appearing white matter (NAWM), enhancing, and non-enhancing MS lesions. The extracted information was compared, and statistically analyzed, and the sensitivity and specificity were calculated.

Results:

The mean R1 (the reciprocal of T1) value of the non-enhancing MS lesions was 0.694 s-1 (T1=1440 ms), for enhancing lesions 1.015 s-1 (T1=985ms), and for NAWM 1.514 s-1 (T1=660ms). For R2 (the reciprocal of T2) values, the mean value was 6.816 s-1 (T2=146ms) for non-enhancing lesions, 8.944 s−1 (T2=112 ms) for enhancing lesions, and 1.916 s−1 (T2=522 ms) for NAWM. PD values averaged 93.069% for non-enhancing lesions, 82.260% for enhancing lesions, and 67.191% for NAWM. For ADC, the mean value for non-enhancing lesions was 1216.60×10−6 mm2/s, for enhancing lesions 1016.66×10−6 mm2/s, and for NAWM 770.51×10−6 mm2/s.

Discussion:

Our results indicate that enhancing and non-enhancing MS lesions significantly decrease R1 and R2 values. Non-enhancing lesions have significantly lower R1 and R2 values compared to enhancing lesions.

Conclusion:

Conversely, PD values are significantly higher in non-enhancing lesions than in enhancing lesions. For ADC, while NAWM has lower values, there was minimal difference between the mean ADC values of enhancing and non-enhancing lesions.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056343086250103020830
2025-01-09
2025-01-29
Loading full text...

Full text loading...

/deliver/fulltext/cmir/10.2174/0115734056343086250103020830/e15734056343086.html?itemId=/content/journals/cmir/10.2174/0115734056343086250103020830&mimeType=html&fmt=ahah

References

  1. Nylander A. Hafler D.A. Multiple sclerosis. J. Clin. Invest. 2012 122 4 1180 1188 10.1172/JCI58649 22466660
    [Google Scholar]
  2. Bedell B.J. Narayana P.A. Implementation and evaluation of a new pulse sequence for rapid acquisition of double inversion recovery images for simultaneous suppression of white matter and CSF. J. Magn. Reson. Imaging 1998 8 3 544 547 10.1002/jmri.1880080305 9626866
    [Google Scholar]
  3. Nelson F. Poonawalla A.H. Hou P. Huang F. Wolinsky J.S. Narayana P.A. Improved identification of intracortical lesions in multiple sclerosis with phase-sensitive inversion recovery in combination with fast double inversion recovery MR imaging. AJNR Am. J. Neuroradiol. 2007 28 9 1645 1649 10.3174/ajnr.A0645 17885241
    [Google Scholar]
  4. Filippi M. Inglese M. Overview of diffusion-weighted magnetic resonance studies in multiple sclerosis. J. Neurol. Sci. 2001 186 Suppl. 1 S37 S43 10.1016/S0022‑510X(01)00489‑0 11334988
    [Google Scholar]
  5. Schmierer K. Scaravilli F. Altmann D.R. Barker G.J. Miller D.H. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann. Neurol. 2004 56 3 407 415 10.1002/ana.20202 15349868
    [Google Scholar]
  6. Barkhof F. The clinico-radiological paradox in multiple sclerosis revisited. Curr. Opin. Neurol. 2002 15 3 239 245 10.1097/00019052‑200206000‑00003 12045719
    [Google Scholar]
  7. Mollison D. Sellar R. Bastin M. Mollison D. Chandran S. Wardlaw J. Connick P. The clinico-radiological paradox of cognitive function and MRI burden of white matter lesions in people with multiple sclerosis: A systematic review and meta-analysis. PLoS One 2017 12 5 e0177727 10.1371/journal.pone.0177727 28505177
    [Google Scholar]
  8. van Walderveen M.A.A. Lycklama à Nijeholt G.J. Adèr H.J. Jongen P.J.H. Polman C.H. Castelijns J.A. Barkhof F. Hypointense lesions on T1-weighted spin-echo magnetic resonance imaging: Relation to clinical characteristics in subgroups of patients with multiple sclerosis. Arch. Neurol. 2001 58 1 76 81 10.1001/archneur.58.1.76 11176939
    [Google Scholar]
  9. Sahraian M.A. Radue E.W. Haller S. Kappos L. Black holes in multiple sclerosis: Definition, evolution, and clinical correlations. Acta Neurol. Scand. 2010 122 1 1 8 10.1111/j.1600‑0404.2009.01221.x 20003089
    [Google Scholar]
  10. Laule C. Vavasour I.M. Moore G.R.W. Oger J. Li D.K.B. Paty D.W. MacKay A.L. Water content and myelin water fraction in multiple sclerosis. J. Neurol. 2004 251 3 284 293 10.1007/s00415‑004‑0306‑6 15015007
    [Google Scholar]
  11. Tozer D.J. Davies G.R. Altmann D.R. Miller D.H. Tofts P.S. Correlation of apparent myelin measures obtained in multiple sclerosis patients and controls from magnetization transfer and multicompartmental T 2 analysis. Magn. Reson. Med. 2005 53 6 1415 1422 10.1002/mrm.20479 15906291
    [Google Scholar]
  12. Laule C. Kozlowski P. Leung E. Li D.K.B. MacKay A.L. Moore G.R.W. Myelin water imaging of multiple sclerosis at 7 T: Correlations with histopathology. Neuroimage 2008 40 4 1575 1580 10.1016/j.neuroimage.2007.12.008 18321730
    [Google Scholar]
  13. Vrenken H. Geurts J.J.G. Knol D.L. van Dijk L.N. Dattola V. Jasperse B. van Schijndel R.A. Polman C.H. Castelijns J.A. Barkhof F. Pouwels P.J.W. Whole-brain T1 mapping in multiple sclerosis: Global changes of normal-appearing gray and white matter. Radiology 2006 240 3 811 820 10.1148/radiol.2403050569 16868279
    [Google Scholar]
  14. Ropele S. Enzinger C. Fazekas F. Iron mapping in multiple sclerosis. Neuroimaging Clin. N. Am. 2017 27 2 335 342 10.1016/j.nic.2016.12.003 28391790
    [Google Scholar]
  15. Neeb H. Schenk J. Multivariate prediction of multiple sclerosis using robust quantitative MR-based image metrics. Z. Med. Phys. 2019 29 3 262 271 10.1016/j.zemedi.2018.10.004 30442457
    [Google Scholar]
  16. Sämann P.G. Knop M. Golgor E. Messler S. Czisch M. Weber F. Brain volume and diffusion markers as predictors of disability and short-term disease evolution in multiple sclerosis. AJNR Am. J. Neuroradiol. 2012 33 7 1356 1362 10.3174/ajnr.A2972 22383242
    [Google Scholar]
  17. Polman C.H. Reingold S.C. Edan G. Filippi M. Hartung H.P. Kappos L. Lublin F.D. Metz L.M. McFarland H.F. O’Connor P.W. Sandberg-Wollheim M. Thompson A.J. Weinshenker B.G. Wolinsky J.S. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann. Neurol. 2005 58 6 840 846 10.1002/ana.20703 16283615
    [Google Scholar]
  18. Campbell Z. Sahm D. Donohue K. Jamison J. Davis M. Pellicano C. Auh S. Ohayon J. Frank J.A. Richert N. Bagnato F. Characterizing contrast-enhancing and re-enhancing lesions in multiple sclerosis. Neurology 2012 78 19 1493 1499 10.1212/WNL.0b013e3182553bd2 22539575
    [Google Scholar]
  19. Frohman E.M. Racke M.K. Raine C.S. Multiple sclerosis--the plaque and its pathogenesis. N. Engl. J. Med. 2006 354 9 942 955 10.1056/NEJMra052130 16510748
    [Google Scholar]
  20. Agarwal R. Brunelli S.M. Williams K. Mitchell M.D. Feldman H.I. Umscheid C.A. Gadolinium-based contrast agents and nephrogenic systemic fibrosis: A systematic review and meta-analysis. Nephrol. Dial. Transplant. 2008 24 3 856 863 10.1093/ndt/gfn593 18952698
    [Google Scholar]
  21. Stojanov D.A. Aracki-Trenkic A. Vojinovic S. Benedeto-Stojanov D. Ljubisavljevic S. Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol. Eur. Radiol. 2016 26 3 807 815 10.1007/s00330‑015‑3879‑9 26105022
    [Google Scholar]
  22. Schlemm L. Chien C. Bellmann-Strobl J. Dörr J. Wuerfel J. Brandt A.U. Paul F. Scheel M. Gadopentetate but not gadobutrol accumulates in the dentate nucleus of multiple sclerosis patients. Mult. Scler. 2017 23 7 963 972 10.1177/1352458516670738 27679460
    [Google Scholar]
  23. Kanda T. Oba H. Toyoda K. Kitajima K. Furui S. Brain gadolinium deposition after administration of gadolinium-based contrast agents. Jpn. J. Radiol. 2016 34 1 3 9 10.1007/s11604‑015‑0503‑5 26608061
    [Google Scholar]
  24. Lenkinski R.E. Gadolinium deposition and retention in the brain: Should we be concerned? Radiol. Cardiothorac. Imaging 2019 1 3 e190104 10.1148/ryct.2019190104 33778513
    [Google Scholar]
  25. Tanenbaum L.N. Tsiouris A.J. Johnson A.N. Naidich T.P. DeLano M.C. Melhem E.R. Quarterman P. Parameswaran S.X. Shankaranarayanan A. Goyen M. Field A.S. Synthetic MRI for clinical neuroimaging: Results of the magnetic resonance image compilation (MAGiC) prospective, multicenter, multireader trial. AJNR Am. J. Neuroradiol. 2017 38 6 1103 1110 10.3174/ajnr.A5227 28450439
    [Google Scholar]
  26. Blystad I. Warntjes J.B.M. Smedby Ö. Lundberg P. Larsson E.M. Tisell A. Quantitative MRI for analysis of peritumoral edema in malignant gliomas. PLoS One 2017 12 5 e0177135 10.1371/journal.pone.0177135 28542553
    [Google Scholar]
  27. Krauss W. Gunnarsson M. Andersson T. Thunberg P. Accuracy and reproducibility of a quantitative magnetic resonance imaging method for concurrent measurements of tissue relaxation times and proton density. Magn. Reson. Imaging 2015 33 5 584 591 10.1016/j.mri.2015.02.013 25708264
    [Google Scholar]
  28. Weiskopf N. Edwards L.J. Helms G. Mohammadi S. Kirilina E. Quantitative magnetic resonance imaging of brain anatomy and in vivo histology. Nat. Rev. Phys. 2021 3 8 570 588 10.1038/s42254‑021‑00326‑1
    [Google Scholar]
  29. Wisnieff C. Ramanan S. Olesik J. Gauthier S. Wang Y. Pitt D. Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: Interpreting positive susceptibility and the presence of iron. Magn. Reson. Med. 2015 74 2 564 570 10.1002/mrm.25420 25137340
    [Google Scholar]
  30. Almolla R.M. Hassan H.A. Raya Y.M. Hussein R.A. Correlation of apparent diffusion coefficient to cognitive impairment in relapsing remittent multiple sclerosis (plaque, peri-plaque and normal appearing white matter). Egypt. J. Radiol. Nucl. Med. 2016 47 3 1009 1018 10.1016/j.ejrnm.2016.04.018
    [Google Scholar]
  31. Yurtsever I. Hakyemez B. Taskapilioglu O. Erdogan C. Turan O.F. Parlak M. The contribution of diffusion-weighted MR imaging in multiple sclerosis during acute attack. Eur. J. Radiol. 2008 65 3 421 426 10.1016/j.ejrad.2007.05.002 17587524
    [Google Scholar]
  32. Khan A.A. D2PAM: Epileptic seizures prediction using adversarial deep dual patch attention mechanism. CAAI Trans. Intell. Technol. 2023 8 3 755 769 10.1049/cit2.12261
    [Google Scholar]
  33. Mushtaq N. Brain tumor segmentation using multi-view attention based ensemble network. Comput. Mater. Continua 2022 72 3 5793 5806 10.32604/cmc.2022.024316
    [Google Scholar]
  34. Alqarafi A. Multi-scale GC-T2: Automated region of interest assisted skin cancer detection using multi-scale graph convolution and tri-movement based attention mechanism. Biom. Signal Process. Control 2024 95 A 106313
    [Google Scholar]
  35. Ndengera M. Delattre B.M.A. Scheffler M. Lövblad K.O. Meling T.R. Vargas M.I. Relaxation time of brain tissue in the elderly assessed by synthetic MRI. Brain Behav. 2022 12 1 e2449 10.1002/brb3.2449 34862855
    [Google Scholar]
  36. Kujur A. Data complexity based evaluation of the model dependence of brain MRI images for classification of brain tumor and Alzheimer’s disease. IEEE Access 2022 10 112117 112133 10.1109/ACCESS.2022.3216393
    [Google Scholar]
  37. Vavasour I.M. Li D.K.B. Laule C. Traboulsee A.L. Moore G.R.W. MacKay A.L. Multi-parametric MR assessment of T1 black holes in multiple sclerosis. J. Neurol. 2007 254 12 1653 1659 10.1007/s00415‑007‑0604‑x 17934875
    [Google Scholar]
  38. Papanikolaou N. Maniatis V. Pappas J. Roussakis A. Efthimiadou R. Andreou J. Biexponential T2 relaxation time analysis of the brain: Correlation with magnetization transfer ratio. Invest. Radiol. 2002 37 7 363 367 10.1097/00004424‑200207000‑00001 12068156
    [Google Scholar]
  39. Nusbaum A.O. Lu D. Tang C.Y. Atlas S.W. Quantitative diffusion measurements in focal multiple sclerosis lesions: Correlations with appearance on TI-weighted MR images. AJR Am. J. Roentgenol. 2000 175 3 821 825 10.2214/ajr.175.3.1750821 10954474
    [Google Scholar]
  40. Cercignani M. Inglese M. Pagani E. Comi G. Filippi M. Mean diffusivity and fractional anisotropy histograms of patients with multiple sclerosis. AJNR Am. J. Neuroradiol. 2001 22 5 952 958 11337342
    [Google Scholar]
  41. Falini A. Calabrese G. Filippi M. Origgi D. Lipari S. Colombo B. Comi G. Scotti G. Benign versus secondary-progressive multiple sclerosis: The potential role of proton MR spectroscopy in defining the nature of disability. AJNR Am. J. Neuroradiol. 1998 19 2 223 229 9504469
    [Google Scholar]
  42. Gaitán M.I. Shea C.D. Evangelou I.E. Stone R.D. Fenton K.M. Bielekova B. Massacesi L. Reich D.S. Evolution of the blood–brain barrier in newly forming multiple sclerosis lesions. Ann. Neurol. 2011 70 1 22 29 10.1002/ana.22472 21710622
    [Google Scholar]
  43. Tranfa M. Pontillo G. Petracca M. Brunetti A. Tedeschi E. Palma G. Cocozza S. Quantitative MRI in multiple sclerosis: From theory to application. AJNR Am. J. Neuroradiol. 2022 43 12 1688 1695 10.3174/ajnr.A7536 35680161
    [Google Scholar]
  44. Blystad I. Håkansson I. Tisell A. Ernerudh J. Smedby Ö. Lundberg P. Larsson E.M. Quantitative MRI for analysis of active multiple sclerosis lesions without gadolinium-based contrast agent. AJNR Am. J. Neuroradiol. 2016 37 1 94 100 10.3174/ajnr.A4501 26471751
    [Google Scholar]
  45. Seewann A. Vrenken H. van der Valk P. Blezer E.L.A. Knol D.L. Castelijns J.A. Polman C.H. Pouwels P.J.W. Barkhof F. Geurts J.J.G. Diffusely abnormal white matter in chronic multiple sclerosis: Imaging and histopathologic analysis. Arch. Neurol. 2009 66 5 601 609 10.1001/archneurol.2009.57 19433660
    [Google Scholar]
  46. Van Walderveen M.A.A. Barkhof F. Pouwels P.J.W. Van Schijndel R.A. Polman C.H. Castelijns J.A. Neuronal damage in T1-hypointense multiple sclerosis lesions demonstrated in vivo using proton magnetic resonance spectroscopy. Ann. Neurol. 1999 46 1 79 87 10.1002/1531‑8249(199907)46:1<79::AID‑ANA12>3.0.CO;2‑9 10401783
    [Google Scholar]
  47. Eisele P. Szabo K. Griebe M. Roßmanith C. Förster A. Hennerici M. Gass A. Reduced diffusion in a subset of acute MS lesions: A serial multiparametric MRI study. AJNR Am. J. Neuroradiol. 2012 33 7 1369 1373 10.3174/ajnr.A2975 22576893
    [Google Scholar]
  48. Balashov K.E. Lindzen E. Acute demyelinating lesions with restricted diffusion in multiple sclerosis. Mult. Scler. 2012 18 12 1745 1753 10.1177/1352458512445407 22523157
    [Google Scholar]
  49. Iannucci G. Rovaris M. Giacomotti L. Comi G. Filippi M. Correlation of multiple sclerosis measures derived from T2-weighted, T1-weighted, magnetization transfer, and diffusion tensor MR imaging. AJNR Am. J. Neuroradiol. 2001 22 8 1462 1467 11559491
    [Google Scholar]
  50. Unal S. Erdogan S. Erden M.I. Erden M.I. Is it possible to discriminate active MS lesions with diffusion weighted imaging? Eurasian J. Med. 2019 51 3 219 223 10.5152/eurasianjmed.2019.18473 31692763
    [Google Scholar]
  51. Werring D.J. Brassat D. Droogan A.G. Clark C.A. Symms M.R. Barker G.J. MacManus D.G. Thompson A.J. Miller D.H. The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: A serial diffusion MRI study. Brain 2000 123 8 1667 1676 10.1093/brain/123.8.1667 10908196
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056343086250103020830
Loading
/content/journals/cmir/10.2174/0115734056343086250103020830
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test