Skip to content
2000
image of Advanced CNN Architecture for Brain Tumor Segmentation and Classification using BraTS-GOAT 2024 Dataset

Abstract

Background:

The BraTS Generalizability Across Tumors (BraTS-GoAT) initiative addresses the critical need for robust and generalizable models in brain tumor segmentation. Despite advancements in automated segmentation techniques, the variability in tumor characteristics and imaging modalities across clinical settings presents a significant challenge.

Objective:

This study aims to develop an advanced CNN-based model for brain tumor segmentation that enhances consistency and utility across diverse clinical environments. The objective is to improve the generalizability of CNN models by applying them to large-scale datasets and integrating robust preprocessing techniques.

Methods:

The proposed approach involves the application of advanced CNN models to the BraTS 2024 challenge dataset, incorporating preprocessing techniques such as standardization, feature extraction, and segmentation. The model's performance was evaluated based on accuracy, mean Intersection over Union (IOU), average Dice coefficient, Hausdorff 95 score, precision, sensitivity, and specificity.

Results:

The model achieved an accuracy of 98.47%, a mean IOU of 0.8185, an average Dice coefficient of 0.7, an average Hausdorff 95 score of 1.66, a precision of 98.55%, a sensitivity of 98.40%, and a specificity of 99.52%. These results demonstrate a significant improvement over the current gold standard in brain tumor segmentation.

Conclusion:

The findings of this study contribute to establishing benchmarks for generalizability in medical imaging, promoting the adoption of CNN-based brain tumor segmentation models in diverse clinical environments. This work has the potential to improve outcomes for patients with brain tumors by enhancing the reliability and effectiveness of automated segmentation techniques.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056344235241217155930
2025-01-02
2025-01-18
Loading full text...

Full text loading...

/deliver/fulltext/cmir/10.2174/0115734056344235241217155930/e15734056344235.html?itemId=/content/journals/cmir/10.2174/0115734056344235241217155930&mimeType=html&fmt=ahah

References

  1. Farajzadeh N. Sadeghzadeh N. Hashemzadeh M. Brain tumor segmentation and classification on MRI via deep hybrid representation learning. Expert Syst. Appl. 2023 224 119963 10.1016/j.eswa.2023.119963
    [Google Scholar]
  2. Saba T. Sameh Mohamed A. El-Affendi M. Amin J. Sharif M. Brain tumor detection using fusion of hand crafted and deep learning features. Cogn. Syst. Res. 2020 59 221 230 10.1016/j.cogsys.2019.09.007
    [Google Scholar]
  3. Rajendran A. Dhanasekaran R.J.P.E. Fuzzy clustering and deformable model for tumor segmentation on MRI brain image: A combined approach. Procedia Eng. 2012 30 327 333 10.1016/j.proeng.2012.01.868
    [Google Scholar]
  4. Walker E.V. Davis F.G. Shaw A. Louchini R. Shack L. Woods R. Kruchko C. Spinelli J. Guiot M-C. Perry J. Melin B. Barnholtz-Sloan J. Turner D. King M.J. Hannah H. Bryant H. CBTR founding affiliates Malignant primary brain and other central nervous system tumors diagnosed in Canada from 2009 to 2013. Neuro-oncol. 2019 21 3 360 369 10.1093/neuonc/noy195 30649461
    [Google Scholar]
  5. Yaqub M. Feng J. Zia M. Arshid K. Jia K. Rehman Z. Mehmood A. State-of-the-art CNN optimizer for brain tumor segmentation in magnetic resonance images. Brain Sci. 2020 10 7 427 10.3390/brainsci10070427 32635409
    [Google Scholar]
  6. Menze B.H. Jakab A. Bauer S. Kalpathy-Cramer J. Farahani K. Kirby J. Burren Y. Porz N. Slotboom J. Wiest R. Lanczi L. Gerstner E. Weber M.A. Arbel T. Avants B.B. Ayache N. Buendia P. Collins D.L. Cordier N. Corso J.J. Criminisi A. Das T. Delingette H. Demiralp C. Durst C.R. Dojat M. Doyle S. Festa J. Forbes F. Geremia E. Glocker B. Golland P. Guo X. Hamamci A. Iftekharuddin K.M. Jena R. John N.M. Konukoglu E. Lashkari D. Mariz J.A. Meier R. Pereira S. Precup D. Price S.J. Raviv T.R. Reza S.M.S. Ryan M. Sarikaya D. Schwartz L. Shin H.C. Shotton J. Silva C.A. Sousa N. Subbanna N.K. Szekely G. Taylor T.J. Thomas O.M. Tustison N.J. Unal G. Vasseur F. Wintermark M. Ye D.H. Zhao L. Zhao B. Zikic D. Prastawa M. Reyes M. Van Leemput K. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 2015 34 10 1993 2024 10.1109/TMI.2014.2377694 25494501
    [Google Scholar]
  7. Havaei M. Davy A. Warde-Farley D. Biard A. Courville A. Bengio Y. Pal C. Jodoin P.M. Larochelle H. Brain tumor segmentation with deep neural networks. Med. Image Anal. 2017 35 18 31 10.1016/j.media.2016.05.004 27310171
    [Google Scholar]
  8. Gupta Gaurav Singh Vinay Brain Tumor segmentation and classification using FCM and support vector machine. IRJET 2017 4 5 792 796
    [Google Scholar]
  9. Corso J.J. Sharon E. Dube S. El-Saden S. Sinha U. Yuille A. Efficient multilevel brain tumor segmentation with integrated bayesian model classification. IEEE Trans. Med. Imaging 2008 27 5 629 640 10.1109/TMI.2007.912817 18450536
    [Google Scholar]
  10. Gordillo N. Montseny E. Sobrevilla P. State of the art survey on MRI brain tumor segmentation. Magn. Reson. Imaging 2013 31 8 1426 1438 10.1016/j.mri.2013.05.002 23790354
    [Google Scholar]
  11. Işın A. Direkoğlu C. Şah M. Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Comput. Sci. 2016 102 317 324 10.1016/j.procs.2016.09.407
    [Google Scholar]
  12. Li J. Wu Q. Wang Y. Zhou S. Zhang L. Wei J. Zhao D. DiffCAS: diffusion based multi-attention network for segmentation of 3D coronary artery from CT angiography. Signal Image Video Process. 2024 18 10 7487 7498 10.1007/s11760‑024‑03409‑5
    [Google Scholar]
  13. Sunil S. Rajeev R.S. Chatterjee A. Pilitsis J.G. Mukherjee A. Paluh J.L. SIENNA: Generalizable lightweight machine learning platform for brain tumor diagnostics. medRxiv 2024 10.1101/2024.04.03.24305210
    [Google Scholar]
  14. Kim Daniel D. Chandra Rajat S. Yang Li Wu Jing Feng Xue Atalay Michael Bettegowda Chetan Active learning in brain tumor segmentation with uncertainty sampling and annotation redundancy restriction. J. Imaging Informat. Med. 2024 1 9 10.1007/s10278‑024‑01037‑6
    [Google Scholar]
  15. Berkley A. Saueressig C. Shukla U. Chowdhury I. Munoz-Gauna A. Shehu O. Singh R. Munbodh R. Clinical capability of modern brain tumor segmentation models. Med. Phys. 2023 50 8 4943 4959 10.1002/mp.16321 36847185
    [Google Scholar]
  16. Hu J. Gu X. Wang Z. Gu X. Mixture of calibrated networks for domain generalization in brain tumor segmentation. Knowl. Base. Syst. 2023 270 110520 10.1016/j.knosys.2023.110520
    [Google Scholar]
  17. Koirala C.P. Mohapatra S. Gosai A. Schlaug G. Automated ensemble-based segmentation of adult brain tumors: A novel approach using the brats africa challenge data. arXiv preprint 2308.07214 2023
    [Google Scholar]
  18. Stember J.N. Shalu H. Reinforcement learning using Deep $$Q$$ networks and $$Q$$ learning accurately localizes brain tumors on MRI with very small training sets. BMC Med. Imaging 2022 22 1 224 10.1186/s12880‑022‑00919‑x 36564724
    [Google Scholar]
  19. Rawat A. Kumar R. Assessing layer normalization with brats mri data in a convolution neural net. International Conference on Computational Intelligence in Data Science Cham: Springer International Publishing, 2022, pp. 124-135. 10.1007/978‑3‑031‑16364‑7_10
    [Google Scholar]
  20. Henry T. Carré A. Lerousseau M. Estienne T. Robert C. Paragios N. Deutsch E. Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net neural networks: A BraTS 2020 challenge solution. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020 Lima, Peru, October 4, 2020, pp. 327-339. 10.1007/978‑3‑030‑72084‑1_30
    [Google Scholar]
  21. Divya B. Rajesh Parameshwaran Nair K. A more generalizable DNN based Automatic Segmentation of Brain Tumors from Multimodal low-resolution 2D MRI. IEEE 18th India Council International Conference (INDICON) Guwahati, India, 2021, pp. 1-5.
    [Google Scholar]
  22. Hua R. Huo Q. Gao Y. Sui H. Zhang B. Sun Y. Mo Z. Shi F. Segmenting brain tumor using cascaded V-Nets in multimodal MR images. Front. Comput. Neurosci. 2020 14 9 10.3389/fncom.2020.00009 32116623
    [Google Scholar]
  23. Xue Y. Xie M. Farhat F.G. Boukrina O. A multi-path decoder network for brain tumor segmentation. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 5th International Workshop, BrainLes 2019, Held in Conjunction with MICCAI 2019 Shenzhen, China, October 17, 2019, pp. 255-265.
    [Google Scholar]
  24. Wang G. Li W. Ourselin S. Vercauteren T. Automatic brain tumor segmentation based on cascaded convolutional neural networks with uncertainty estimation. Front. Comput. Neurosci. 2019 13 56 10.3389/fncom.2019.00056 31456678
    [Google Scholar]
  25. Zhao H. Morgenroth J. Pearse G. Schindler J. A systematic review of individual tree crown detection and delineation with convolutional neural networks (CNN). Curr. For. Rep. 2023 9 3 149 170 10.1007/s40725‑023‑00184‑3
    [Google Scholar]
  26. Akter A. Nosheen N. Ahmed S. Hossain M. Yousuf M.A. Almoyad M.A.A. Hasan K.F. Moni M.A. Robust clinical applicable CNN and U-Net based algorithm for MRI classification and segmentation for brain tumor. Expert Syst. Appl. 2024 238 122347 10.1016/j.eswa.2023.122347
    [Google Scholar]
  27. Ronneberger O. Fischer P. Brox T. U-Net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI) Springer, Cham, 18 November 2015, pp 234–241. 10.1007/978‑3‑319‑24574‑4_28
    [Google Scholar]
  28. Çiçek Ö. Abdulkadir A. Lienkamp S.S. Brox T. Ronneberger O. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. Medical Image Computing and Computer-Assisted Intervention (MICCAI) Springer, Cham, 02 October 2016, pp 424–432. 10.1007/978‑3‑319‑46723‑8_49
    [Google Scholar]
  29. Kamnitsas K. Ledig C. Newcombe V.F.J. Simpson J.P. Kane A.D. Menon D.K. Rueckert D. Glocker B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 2017 36 61 78 10.1016/j.media.2016.10.004 27865153
    [Google Scholar]
  30. Isensee F. Petersen J. Kohl S. Jäger P. Maier-Hein K.H. No new-net. arXiv preprint :1809.10483 2018
    [Google Scholar]
  31. Milletari F. Navab N. Ahmadi S-A. V-Net: Fully convolutional neural networks for volumetric medical image segmentation. 2016 Fourth International Conference on 3D Vision (3DV) 2016, pp. 565-571. 10.1109/3DV.2016.79
    [Google Scholar]
  32. Myronenko A. 3D MRI brain tumor segmentation using autoencoder regularization. International MICCAI Brainlesion Workshop Springer, Cham, 26 January 2019, pp. 311-320. 10.1007/978‑3‑030‑11726‑9_28
    [Google Scholar]
  33. Wang G. Li W. Ourselin S. Vercauteren T. Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. 2019 International MICCAI Brainlesion Workshop. 2019, pp. 178-190. 10.1007/978‑3‑030‑11723‑8_17
    [Google Scholar]
  34. Andermatt S. Pezold S. Cattin P.C. Multi-planar deep segmentation networks for 3D brain tumor segmentation. International MICCAI Brainlesion Workshop 2018, pp. 203-21. 10.1007/978‑3‑030‑11723‑8_20
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056344235241217155930
Loading
/content/journals/cmir/10.2174/0115734056344235241217155930
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: MRI ; Generalizability ; CNN ; Brain tumor ; AGI
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test