Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

This paper examines the impact of transfer learning and CLAHE (Contrast Limited Adaptive Histogram Equalization) optimization on the classification of medical images, specifically brain images.

Methods

Four different setups were tested: normal images without data augmentation, normal images with data augmentation, CLAHE-processed images without data augmentation, and CLAHE-processed images with data augmentation.

Results

The results show that using CLAHE combined with data augmentation significantly improves classification accuracy. Specifically, the combination of CLAHE and data augmentation achieved a precision of 0.90, a recall of 0.87, an F1-score of 0.89, and an accuracy of 0.86, outperforming the other setups.

Conclusion

These findings highlight the effectiveness of CLAHE optimization in the context of transfer learning, particularly when data augmentation techniques are also applied, leading to an overall improvement in the performance of brain image classification models.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056342623241119061744
2025-01-17
2025-07-14
The full text of this item is not currently available.

References

  1. SuzukiK. Overview of deep learning in medical imaging.Radiological Phys. Technol.201710325727310.1007/s12194‑017‑0406‑5
    [Google Scholar]
  2. KhanM.A.A. KhanM.S.A.P. AliA.F.S.U. AlzubaidiA. A review on deep learning in medical image analysis.J. King Saud Uni. Comput. Inform. Sci.202234813171330
    [Google Scholar]
  3. RaghuM. ZhangC. KleinbergJ. BengioS. Transfusion: Understanding transfer learning for medical imaging.Adv. Neural Inform. Process. Sys.2019323347335710.1109/TKDE.2009.191
    [Google Scholar]
  4. PanS.J. YangQ. A survey on transfer learning.IEEE Trans. Knowl. Data Eng.201022101345135910.1109/TKDE.2009.191
    [Google Scholar]
  5. ZhouY. WangY. ZhouY. JiangY. HeL. Classification of medical images based on deep learning with adaptive histogram equalization and image augmentation.Comput. Math. Methods Med.2020202010.1155/2020/5467198
    [Google Scholar]
  6. LiZ. ZhaoS. ChenY. LuoF. KangZ. CaiS. ZhaoW. LiuJ. ZhaoD. LiY. A deep-learning-based framework for severity assessment of COVID-19 with CT images.Expert Syst. Appl.202118511561610.1016/j.eswa.2021.115616
    [Google Scholar]
  7. CatakF.O. YueT. AliS. Uncertainty-aware prediction validator in deep learning models for cyber-physical system data.ACM Trans. Softw. Eng. Methodol.20223143110.1145/3527451
    [Google Scholar]
  8. HeeE. Transfer learning for medical image classification: A literature review.BMC Med. Imag.20222279379710.1186/s12880‑022‑00793‑7
    [Google Scholar]
  9. QuadriR. DeshpandeA. Deep learning-based segmentation and classification of COVID-19 infection severity levels from CT scans.Revue d’Intelligence Artificielle2022361414810.18280/ria.360105
    [Google Scholar]
  10. TaouliA. BensaberD.A. BencherifK. KeskesN. Semantics convolutional neural network for medical images analysis.Revue d’Intelligence Artificielle202236227928810.18280/ria.360212
    [Google Scholar]
  11. HossainM.M.N. HuN.W. KazempourA. MurfeeW.L. BaloghP. Hemodynamic characteristics of a tortuous microvessel using high fidelity red blood cell resolved simulations.Microcirculation2024317e1287510.1111/micc.12875
    [Google Scholar]
  12. NalepaJ. MyllerM. KawulokM. Hyperspectral data augmentation.arXiv2019201905880
    [Google Scholar]
  13. BasithS. ManavalanB. ShinT.H. LeeD.Y. LeeG. Evolution of machine learning algorithms in the prediction and design of anticancer peptides.Curr. Protein Pept. Sci.202021121242125010.2174/1389203721666200117171403
    [Google Scholar]
  14. LeCunY. The power and limits of deep learning.Res. Technol. Manag.2018616222710.1080/08956308.2018.1516928
    [Google Scholar]
  15. SundaramM. RamarK. ArumugamN. PrabinG. Histogram modified local contrast enhancement for mammography images.Appl. Soft Comput.20111185809581610.1016/j.asoc.2011.05.003
    [Google Scholar]
  16. LuH-C. The Classification of mammogram using convolutional neural network with specific image preprocessing for breast cancer detection.2019 2nd International Conference on Artificial Intelligence and Big Data (ICAIBD)25-28 May, 2019, Chengdu, China, 2019, pp. 9-12.10.1109/ICAIBD.2019.8837000
    [Google Scholar]
  17. PisanoE.D. ZongS. HemmingerB.M. DeLucaM. JohnstonR.E. MullerK. BraeuningM.P. PizerS.M. Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms.Digital Imag. J.19981119310.1007/BF03178082
    [Google Scholar]
  18. KusriniK. MuhammadR.A.Y. Al FattaH. The effect of gaussian filter and data preprocessing on punakawan puppet image classification with convolutional neural network algorithm.Iran. J. Electr. Comput. Eng.2022124pp3752pp3761[IJECE].10.11591/ijece.v12i4.pp3752‑3761
    [Google Scholar]
  19. CuiY. DingJ. LiuM. LiuX. CNN-based COVID-19 pneumonia diagnosis: A comparative study on different image preprocessing method.2021 2nd International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)15-17 Oct, 2021, Shanghai, China, 2021, pp. 117-121.10.1109/AINIT54228.2021.00033
    [Google Scholar]
  20. YasarlaK.M. KrishnaM.S. DhanunjayaB. Improving accuracy of mammogram classification using CLAHE and Gaussian filter.Int. J. Comput. Appl.2020975888710.5120/ijca2020920734
    [Google Scholar]
  21. SrivastavaR. SinghA. Enhancing the performance of deep learning models for brain tumor classification using combined CLAHE and Gaussian filter.J. Digit. Imaging20213451112112210.1007/s10278‑021‑00489‑5
    [Google Scholar]
  22. GuptaR. ChatterjeeS. Comparative analysis of preprocessing techniques for CNN-based diagnosis: CLAHE vs. Discrete Cosine Transform.IEEE Access2020817574517575710.1109/ACCESS.2020.3024465
    [Google Scholar]
  23. ChakrabartyN. Brain MRI images for brain tumor detection.Available from: https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor- detection(Accessed on: 23-10-2024)
  24. FabbriA. FurlanA. MasciocchiC. GattiM. Data augmentation strategies for deep learning in medical image analysis.Med. Image Anal.20206510181410.1016/j.media.2020.101814
    [Google Scholar]
  25. PerezL. WangJ. The effectiveness of data augmentation in image classification using deep learning.arXiv2017201704621
    [Google Scholar]
  26. AugusteK.A. WongW.Y. CavanaghP. Data augmentation techniques in medical image analysis: A comprehensive review.Med. Image Anal.20227310213810.1016/j.media.2021.102138
    [Google Scholar]
  27. RonnebergerO. FischerP. BroxT. U-Net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015201510.1007/978‑3‑319‑24574‑4_28
    [Google Scholar]
  28. WangS. SummersR.M. Machine learning and radiology.Med. Image Anal.201216593395110.1016/j.media.2012.02.005
    [Google Scholar]
  29. ShortenC. KhoshgoftaarT.M. A survey on image data augmentation for deep learning.J. Big Data2019616010.1186/s40537‑019‑0197‑0
    [Google Scholar]
  30. ZhangJ. Data augmentation for medical imaging: A review.Med. Image Anal.20206510181410.1016/j.media.2020.101814
    [Google Scholar]
  31. TaylorL. NitschkeG. Improving deep learning with generic data augmentation techniques.IEEE Comput. Graph. Appl.2018385283710.1109/MCG.2018.052461
    [Google Scholar]
  32. Frid-AdarM. KlangE. AmitaiM. GoldbergerJ. GreenspanH. Synthetic data augmentation using GAN for improved liver lesion classification.2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)04-07 Apr, 2018, Washington, DC, USA, 2018, pp. 289-293.10.1109/ISBI.2018.8363576
    [Google Scholar]
  33. ZhouZ. SiddiqueeM.M.R. TajbakhshN. LiangJ. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation.IEEE Trans. Med. Imaging20203961856186710.1109/TMI.2019.2959609
    [Google Scholar]
  34. KumarR. GuptaP. A comprehensive survey on denoising techniques for MRI images.Med. Image Anal.20217010197410.1016/j.media.2020.101974
    [Google Scholar]
  35. ShahD.O. HingF.N. PhatakS.V. MavroforakisC. A comprehensive review of denoising techniques for MRI images.J. Imaging Sci. Technol.202064606040310604031310.2352/J.ImagingSci.Technol.2020.64.6.060403
    [Google Scholar]
  36. PizerS.M. AmburnE.P. AustinJ.D. CromartieR. GeselowitzA. GreerT. ter Haar RomenyB. ZimmermanJ.B. ZuiderveldK. Adaptive histogram equalization and its variations.Comput. Vis. Graph. Image Process.198739335536810.1016/S0734‑189X(87)80186‑X
    [Google Scholar]
  37. ZuiderveldK. Contrast limited adaptive histogram equalizationAcademic Press199410.1016/B978‑0‑12‑336156‑1.50061‑6
    [Google Scholar]
  38. MokoenaP. PheehaK. A comparative study of CLAHE and histogram equalization for contrast enhancement in digital images. Advances in Science Technology and Engineering Systems Journal20205655656110.25046/aj050664
    [Google Scholar]
  39. RezaA.M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement.J. VLSI Signal Process.2004381354410.1023/B:VLSI.0000028532.53893.82
    [Google Scholar]
  40. LitjensG. KooiT. BejnordiB.E. SetioA.R. CiompiF. GhafoorianM. van GinnekenB. A survey on deep learning in medical image analysis.Med. Image Anal.201742608810.1016/j.media.2017.07.005
    [Google Scholar]
  41. SimonyanK. ZissermanA. Very deep convolutional networks for large-scale image recognition.arXiv:1409.155620152015155610.48550/arXiv.1409.1556
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056342623241119061744
Loading
/content/journals/cmir/10.2174/0115734056342623241119061744
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test