Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background

Patients with abdominal Pheochromocytoma and Paraganglioma (PPGL) are prone to a hypertensive crisis during surgery, which may endanger their lives. This study aimed to develop and validate a Computed Tomography (CT) radiomics nomogram for the prediction of intraoperative hypertensive crisis in patients with PPGL.

Methods

In this retrospective study, 212 patients with abdominal PPGL underwent abdominal-enhanced CT and surgical resection. Radiomic features were extracted from arterial and venous phases. Multivariable logistic regression models were developed using an internal validation and an external test set. The performance of the nomograms was determined by their discrimination, calibration, and clinical usefulness.

Results

A total of 212 patients with PPGL were included, involving 44 with hypertensive crises. The patients were divided into training (n = 117), validation (n = 51), and test (n = 44) sets. Eighteen radiomics-relevant radiomic features were selected. A history of coronary heart disease and the CT radiomics score were included in the prediction model, which achieved an area under the curve of 0.91 [95% Confidence Interval (CI) 0.85-0.97] in the training set, 0.93 (95% CI 0.84-0.99) in the validation set, and 0.85 (95% CI 0.72-0.97) in the test set. The decision curve analysis demonstrated the radiomics nomogram to be clinically useful.

Conclusion

Our study has developed and validated a CT radiomics nomogram that has demonstrated remarkable potential in predicting intraoperative hypertensive crisis in patients with abdominal pheochromocytoma and paraganglioma. This non-invasive, straightforward approach has exhibited high accuracy, ease of use, and predictive power.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056320071241120090524
2025-01-01
2025-06-19
The full text of this item is not currently available.

References

  1. LendersJ.W.M. DuhQ.Y. EisenhoferG. Gimenez-RoqueploA.P. GrebeS.K.G. MuradM.H. NaruseM. PacakK. YoungW.F.Jr Endocrine Society Pheochromocytoma and paraganglioma: An endocrine society clinical practice guideline.J. Clin. Endocrinol. Metab.20149961915194210.1210/jc.2014‑149824893135
    [Google Scholar]
  2. NaranjoJ. DoddS. MartinY.N. Perioperative management of Pheochromocytoma.J. Cardiothorac. Vasc. Anesth.20173141427143910.1053/j.jvca.2017.02.02328392094
    [Google Scholar]
  3. JainA. BaraccoR. KapurG. Pheochromocytoma and paraganglioma—An update on diagnosis, evaluation, and management.Pediatr. Nephrol.202035458159410.1007/s00467‑018‑4181‑230603807
    [Google Scholar]
  4. TianJ BaoZ YuanY The duration of preoperative administration of single α-Receptor Blocker Phenoxybenzamine before Adrenalectomy for Pheochromocytoma: 18 years of clinical experience from nationwide high-volume center.Biomed. Res. Int.20192019261313710.1155/2019/2613137
    [Google Scholar]
  5. GroebenH. WalzM.K. NottebaumB.J. AlesinaP.F. GreenwaldA. SchumannR. HollmannM.W. SchwarteL. BehrendsM. RösselT. GroebenC. SchäferM. LoweryA. HirataN. YamakageM. MillerJ.A. CherryT.J. NelsonA. SolorzanoC.C. GigliottiB. WangT.S. WietaschJ.K.G. FriederichP. SheppardB. GrahamP.H. WeingartenT.N. SprungJ. International multicentre review of perioperative management and outcome for catecholamine-producing tumours.Br. J. Surg.20201072e170e17810.1002/bjs.1137831903598
    [Google Scholar]
  6. LeungK. StammM. RajaA. LowG. Pheochromocytoma: the range of appearances on ultrasound, CT, MRI, and functional imaging.AJR Am. J. Roentgenol.2013200237037810.2214/AJR.12.912623345359
    [Google Scholar]
  7. KongJ. ZhengJ. WuJ. WuS. CaiJ. DiaoX. XieW. ChenX. YuH. HuangL. FangH. FanX. QinH. LiY. WuZ. HuangJ. LinT. Development of a radiomics model to diagnose pheochromocytoma preoperatively: A multicenter study with prospective validation.J. Transl. Med.20222013110.1186/s12967‑022‑03233‑w35033104
    [Google Scholar]
  8. AnsquerC. DruiD. MiralliéE. Renaudin-AutainK. DenisA. Gimenez-RoqueploA.P. LeuxC. ToulgoatF. Kraeber-BodéréF. CarlierT. Usefulness of FDG-PET/CT-based radiomics for the characterization and genetic orientation of Pheochromocytomas before surgery.Cancers (Basel)2020129242410.3390/cancers1209242432859070
    [Google Scholar]
  9. YiX. GuanX. ZhangY. LiuL. LongX. YinH. WangZ. LiX. LiaoW. ChenB.T. ZeeC. Radiomics improves efficiency for differentiating subclinical pheochromocytoma from lipid-poor adenoma: A predictive, preventive and personalized medical approach in adrenal incidentalomas.EPMA J.20189442142910.1007/s13167‑018‑0149‑330538793
    [Google Scholar]
  10. Araujo-CastroM. García CenteroR. López-GarcíaM.C. Álvarez EscoláC. Calatayud GutiérrezM. Blanco CarreraC. De Miguel NovoaP. Valdés GallegoN. HanzuF.A. Gracia GimenoP. Fernández-LadredaM.T. Percovich HualpaJ.C. Mora PortaM. Lorca ÁlvaroJ. PianH. CaracuelI.R. Sanjuanbenito DehesaA. Gómez Dos SantosV. Serrano RomeroA. OliveiraC.L. Surgical outcomes in the pheochromocytoma surgery. Results from the PHEO-RISK study.Endocrine202174367668410.1007/s12020‑021‑02843‑634373995
    [Google Scholar]
  11. KwonS.Y. LeeK.S. LeeJ.N. HaY.S. ChoiS.H. KimH.T. KimT.H. YooE.S. KwonT.G. Risk factors for hypertensive attack during pheochromocytoma resection.Investig. Clin. Urol.201657318419010.4111/icu.2016.57.3.18427194549
    [Google Scholar]
  12. UrabeF. KimuraS. IwataniK. TakahashiK. ItoK. TashiroK. TsuzukiS. MikiJ. KimuraT. FurutaN. EgawaS. Risk factors for perioperative Hemodynamic instability in Pheochromocytoma: A systematic review and meta-analysis.J. Clin. Med.20211019453110.3390/jcm1019453134640549
    [Google Scholar]
  13. BaiS. WuB. YaoZ. ZhuX. JiangY. WangH. Development and validation of a clinical model to predict intraoperative hemodynamic instability in patients with pheochromocytomas surgery.Endocr. J.2020671818910.1507/endocrj.EJ19‑027831597814
    [Google Scholar]
  14. ZhangZ YeY YuJ A nomogram for predicting intraoperative Hemodynamic instability in patients with Pheochromocytoma.Front. Endocrinol. (Lausanne)20221278778610.3389/fendo.2021.787786
    [Google Scholar]
  15. MoonsK.G.M. AltmanD.G. ReitsmaJ.B. IoannidisJ.P.A. MacaskillP. SteyerbergE.W. VickersA.J. RansohoffD.F. CollinsG.S. Transparent reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): Explanation and elaboration.Ann. Intern. Med.20151621W1W7310.7326/M14‑069825560730
    [Google Scholar]
  16. LiJ. FineJ. On sample size for sensitivity and specificity in prospective diagnostic accuracy studies.Stat. Med.200423162537255010.1002/sim.183615287083
    [Google Scholar]
  17. GuoY. LiH. XieD. YouL. YanL. LiY. ZhangS. Hemorrhage in pheochromocytoma surgery: Evaluation of preoperative risk factors.Endocrine202276242643310.1007/s12020‑021‑02964‑y35426588
    [Google Scholar]
  18. RodriguezM.A. KumarS.K. De CaroM. Hypertensive crisis.Cardiol. Rev.201018210210710.1097/CRD.0b013e3181c307b720160537
    [Google Scholar]
  19. YinQ. WangM. WangC. WuZ. YuanF. ChenK. TangY. ZhaoX. MiaoF. Differentiation between benign and malignant solid pseudopapillary tumor of the pancreas by MDCT.Eur. J. Radiol.201281113010301810.1016/j.ejrad.2012.03.01322520082
    [Google Scholar]
  20. SuoX. ChenJ. ZhaoY. TangQ. YangX. YuanY. NieL. ChenN. ZengH. YaoJ. Clinicopathological and radiological significance of the collateral vessels of renal cell carcinoma on preoperative computed tomography.Sci. Rep.2021111518710.1038/s41598‑021‑84631‑w33664382
    [Google Scholar]
  21. KimJ.Y. LeeJ.H. NamJ.G. ChoiS.H. SeoY.W. JeongY.K. Value of tumor vessel sign in isolated circumscribed hypervascular abdominopelvic mesenchymal tumors on multidetector computed tomography.J. Comput. Assist. Tomogr.201438574775210.1097/RCT.000000000000009924834882
    [Google Scholar]
  22. FangX. ZhangQ. LiuF. LiJ. WangT. CaoK. ZhangH. LiQ. YuJ. ZhouJ. ZhuM. LiN. JiangH. ShaoC. LuJ. WangL. BianY. T2-Weighted image Radiomics Nomogram to predict Pancreatic Serous and Mucinous Cystic Neoplasms.Acad. Radiol.20233081562157110.1016/j.acra.2022.10.00836379815
    [Google Scholar]
  23. HeinrichMP MaierO HandelsH Multi-modal multi-atlas segmentation using discrete optimisation and self-similarities.Proceedings of the VISCERAL Anatomy Grand Challenge at the 2015 IEEE International Symposium on Biomedical Imaging (ISBI)New York, NY, Apr 16th, 20152015
    [Google Scholar]
  24. ZhangL LaBelleW UnberathM A vendor-agnostic, PACS integrated, and DICOM-compatible software-server pipeline for testing segmentation algorithms within the clinical radiology workflow.Front. Med. (Lausanne)202310124157010.3389/fmed.2023.1241570
    [Google Scholar]
  25. van GriethuysenJ.J.M. FedorovA. ParmarC. HosnyA. AucoinN. NarayanV. Beets-TanR.G.H. Fillion-RobinJ.C. PieperS. AertsH.J.W.L. Computational Radiomics system to decode the radiographic phenotype.Cancer Res.20177721e104e10710.1158/0008‑5472.CAN‑17‑033929092951
    [Google Scholar]
  26. ChalkidouA. O’DohertyM.J. MarsdenP.K. False discovery rates in PET and CT studies with texture features: A systematic review.PLoS One2015105e012416510.1371/journal.pone.012416525938522
    [Google Scholar]
  27. LubnerM.G. SmithA.D. SandrasegaranK. SahaniD.V. PickhardtP.J. CT texture analysis: Definitions, applications, biologic correlates, and challenges.Radiographics20173751483150310.1148/rg.201717005628898189
    [Google Scholar]
  28. PortetS. A primer on model selection using the Akaike information Criterion.Infect. Dis. Model.2020511112810.1016/j.idm.2019.12.010
    [Google Scholar]
  29. PengL. ChenZ. LongZ. LiuM. LeiL. WangC. PengH. ShiY. PengY. DengQ. WangS. ZouG. WanL. YuanH. HeL. XieY. TangZ. WanN. GongY. HouX. ShenL. XiaK. LiJ. ChenC. QiuR. KlockgetherT. TangB. JiangH. New model for estimation of the age at onset in Spinocerebellar Ataxia type 3.Neurology20219623e2885e289510.1212/WNL.000000000001206833893204
    [Google Scholar]
  30. HeY. Ching Wan MaR. McIntyreH.D. SacksD.A. LoweJ. CatalanoP.M. TamW.H. Comparing IADPSG and NICE diagnostic criteria for GDM in predicting adverse pregnancy outcomes.Diabetes Care20224592046205410.2337/dc22‑057935880808
    [Google Scholar]
  31. GuerreroM.A. SchreinemakersJ.M.J. VriensM.R. SuhI. HwangJ. ShenW.T. GosnellJ. ClarkO.H. DuhQ.Y. Clinical spectrum of pheochromocytoma.J. Am. Coll. Surg.2009209672773210.1016/j.jamcollsurg.2009.09.02219959041
    [Google Scholar]
  32. ZelinkaT. ŠtrauchB. PetrákO. HolajR. VrankováA. WeisserováH. PacákK. WidimskýJ.Jr Increased blood pressure variability in pheochromocytoma compared to essential hypertension patients.J. Hypertens.200523112033203910.1097/01.hjh.0000185714.60788.5216208146
    [Google Scholar]
  33. BisogniV. PetramalaL. OlivieroG. BonviciniM. MezzadriM. OlmatiF. ConcistrèA. SaracinoV. CeliM. TonnariniG. IannucciG. De TomaG. CiardiA. La TorreG. LetiziaC. Analysis of short-term blood pressure variability in Pheochromocytoma/Paraganglioma patients.Cancers (Basel)201911565810.3390/cancers1105065831083609
    [Google Scholar]
  34. ShimboD. SheaS. McClellandR.L. VieraA.J. MannD. NewmanJ. LimaJ. PolakJ.F. PsatyB.M. MuntnerP. Associations of aortic distensibility and arterial elasticity with long-term visit-to-visit blood pressure variability: the Multi-Ethnic Study of Atherosclerosis (MESA).Am. J. Hypertens.201326789690210.1093/ajh/hpt04023537891
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056320071241120090524
Loading
/content/journals/cmir/10.2174/0115734056320071241120090524
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Hypertension; Paraganglioma; Pheochromocytoma; Radiomics; X-ray computed tomography
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test