Skip to content
2000
image of Exploration of Cervical Cancer Image Processing and Detection Based on U-RCNNs

Abstract

Background:

Cervical cancer is a prevalent malignancy among women, often asymptomatic in early stages, complicating detection.

Objective:

This study aims to investigate innovative techniques for early cervical cancer detection using a novel U-RCNNS model.

Methods:

Cervical epithelial cell images stained with hematoxylin and eosin (HE) were analyzed using the U-RCNNS model, which integrates U-Net for segmentation and R-CNN for object detection, incorporating dilated convolution techniques.

Results:

The U-RCNNS model significantly improved the accuracy of detecting and segmenting cervical cancer cells, with the enhanced Mask R-CNN showing notable advancements over the baseline model.

Conclusion:

The U-RCNNS model presents a promising solution for early cervical cancer detection, offering improved accuracy compared to traditional methods and highlighting its potential for clinical application in early diagnosis.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056333197241211162651
2025-01-02
2025-01-18
Loading full text...

Full text loading...

/deliver/fulltext/cmir/10.2174/0115734056333197241211162651/e15734056333197.html?itemId=/content/journals/cmir/10.2174/0115734056333197241211162651&mimeType=html&fmt=ahah

References

  1. Guo P. Xue Z. Angara S. Antani S.K. Unsupervised deep learning registration of uterine cervix sequence images. Cancers 2022 14 10 2401 10.3390/cancers14102401 35626005
    [Google Scholar]
  2. AbuKhalil T. Alqaralleh B.A.Y. Al-Omari A.H. Optimal deep learning based inception model for cervical cancer diagnosis. Comput. Mater. Continua 2022 72 1 57 10.32604/cmc.2022.024367
    [Google Scholar]
  3. Anupama C.S.S. Jose B.T.J. Eid H.F. Intelligent classification model for biomedical pap smear images on IoT environment. Comput. Mater. Continua 2022 71 2 3969 3983 10.32604/cmc.2022.022701
    [Google Scholar]
  4. Waly I.M. Sikkandar Y.M. Aboamer A.M. Kadry S. Thinnukool O. Optimal deep convolution neural network for cervical cancer diagnosis model. Comput. Mater. Continua 2022 70 2 3295 3309 10.32604/cmc.2022.020713
    [Google Scholar]
  5. Heerden L.E. Visser J. Koedooder C. Rasch C.R.N. Pieters B.R. Bel A. OC-0174: Deformable image registration for dose accumulation of adaptive EBRT and BT in cervical cancer. Radiother. Oncol. 2018 127 S91 10.1016/S0167‑8140(18)30484‑5
    [Google Scholar]
  6. Chapman C.H. Polan D. Vineberg K. Jolly S. Maturen K.E. Brock K.K. Prisciandaro J.I. Deformable image registration–based contour propagation yields clinically acceptable plans for MRI-based cervical cancer brachytherapy planning. Brachytherapy 2018 17 2 360 367 10.1016/j.brachy.2017.11.019 29331573
    [Google Scholar]
  7. van Heerden L.E. Houweling A.C. Koedooder K. van Kesteren Z. van Wieringen N. Rasch C.R.N. Pieters B.R. Bel A. Structure-based deformable image registration: Added value for dose accumulation of external beam radiotherapy and brachytherapy in cervical cancer. Radiother. Oncol. 2017 123 2 319 324 10.1016/j.radonc.2017.03.015 28372889
    [Google Scholar]
  8. Nemoto M.W. Iwai Y. Togasaki G. Kurokawa M. Harada R. Kobayashi H. Uno T. Preliminary results of a new workflow for MRI/CT-based image-guided brachytherapy in cervical carcinoma. Jpn. J. Radiol. 2017 35 12 760 765 10.1007/s11604‑017‑0690‑3 29039108
    [Google Scholar]
  9. Khalili A.A. Hamarneh G. Zakariaee R. Spadinger I. Abugharbieh R. Propagation of registration uncertainty during multi-fraction cervical cancer brachytherapy. Phys. Med. Biol. 2017 62 20 8116 8135 10.1088/1361‑6560/aa8b37 28885196
    [Google Scholar]
  10. Mohammadi R. Mahdavi S. Jaberi R. Siavashpour Z. Janani L. Meigooni A. Reiazi R. Evaluation of deformable image registration algorithm for determination of accumulated dose for brachytherapy of cervical cancer patients. J. Contemp. Brachytherapy 2019 11 5 469 478 10.5114/jcb.2019.88762 31749857
    [Google Scholar]
  11. Rigaud B. Klopp A. Vedam S. Venkatesan A. Taku N. Simon A. Haigron P. de Crevoisier R. Brock K.K. Cazoulat G. Deformable image registration for dose mapping between external beam radiotherapy and brachytherapy images of cervical cancer. Phys. Med. Biol. 2019 64 11 115023 10.1088/1361‑6560/ab1378 30913542
    [Google Scholar]
  12. Miyasaka Y. Kadoya N. Umezawa R. Takayama Y. Ito K. Yamamoto T. Dobashi S. Takeda K. Nemoto K. Iwai T. Jingu K. Clinical impact of estimating rectal toxicity using deformable image registration for cervical cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 2019 105 1 E739 10.1016/j.ijrobp.2019.06.841
    [Google Scholar]
  13. Peng Q. Peng Y. Zhu J. Cai M. Zhou L. Accuracy of different image registration methods in image-guided adaptive brachytherapy for cervical cancer. Nan Fang Yi Ke Da Xue Xue Bao 2018 38 11 1344 1348 10.12122/j.issn.1673‑4254.2018.11.11 30514683
    [Google Scholar]
  14. Jaya B.K. Kumar S.S. Image registration based cervical cancer detection and segmentation using ANFIS classifier. Asian Pac. J. Cancer Prev. 2018 19 11 3203 3209 10.31557/APJCP.2018.19.11.3203 30486611
    [Google Scholar]
  15. Wu N. Yu A. Zhang L. Liu W. Gao J. Zhang C. Zheng Y. Biocompatible nanoplatform based on mussel adhesive chemistry: Effective assembly, dual mode sensing, and cellular imaging performance. Adv. Mater. Interfaces 2019 6 17 1900732 10.1002/admi.201900732
    [Google Scholar]
  16. Mehta R. Kaur P. Choudhury D. Paul K. Luxami V. Al3+ induced hydrolysis of rhodamine-based Schiff-base: Applications in cell imaging and ensemble as CN- sensor in 100% aqueous medium. J. Photochem. Photobiol. Chem. 2019 380 111851 10.1016/j.jphotochem.2019.05.014
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056333197241211162651
Loading
/content/journals/cmir/10.2174/0115734056333197241211162651
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test