Skip to content
2000
image of Personalized Respiratory Motion Modeling Incorporating Longitudinal Data through Two-stage Transfer Learning

Abstract

Purpose:

This study aims to develop an accurate image registration framework for personalized respiratory motion modeling.

Methods:

The proposed framework incorporates longitudinal data through a two-stage transfer learning approach. In the first stage, transfer learning is employed on longitudinal data collected from the same device. In the second stage, a personalized model is constructed using the transfer learning approach, reusing the model from the first stage. A novel cross-error function is introduced to guide the customized adaptation stage.

Results:

The experiments demonstrate the effectiveness of the proposed framework in respiratory motion modeling. Integrating longitudinal data allows for improved accuracy for personalized respiratory motion modeling.

Conclusion:

The study presents a novel approach that incorporates longitudinal data into a two-stage transfer learning process for personalized respiratory motion modeling. The framework demonstrates improved accuracy. The results highlight the potential of leveraging longitudinal data to provide personalized image registration solutions.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056325170250114210309
2025-01-21
2025-02-19
The full text of this item is not currently available.

References

  1. Schweikard A. Glosser G. Bodduluri M. Murphy M.J. Adler J.R. Robotic motion compensation for respiratory movement during radiosurgery. Comput. Aided Surg. 2000 5 4 263 277 10.3109/10929080009148894 11029159
    [Google Scholar]
  2. Romaguera L.V. Mezheritsky T. Kadoury S. Personalized respiratory motion model using conditional generative networks for mr-guided radiotherapy. Available from: https://api.semanticscholar.org/CorpusID:237621025 2021
  3. Fayad H. Pan T. Pradier O. Visvikis D. Patient specific respiratory motion modeling using a 3D patient’s external surface. Med. Phys. 2012 39 6Part1 3386 3395 10.1118/1.4718578 22755719
    [Google Scholar]
  4. Fassi A. Seregni M. Riboldi M. Cerveri P. Sarrut D. Ivaldi G.B. Fatis d.P.T. Liotta M. Baroni G. Surrogate-driven deformable motion model for organ motion tracking in particle radiation therapy. Phys. Med. Biol. 2015 60 4 1565 1582 10.1088/0031‑9155/60/4/1565 25615399
    [Google Scholar]
  5. Wang T. He T. Zhang Z. Chen Q. Zhang L. Xia G. Yang L. Wang H. Wong S.T.C. Li H. A personalized image-guided intervention system for peripheral lung cancer on patient-specific respiratory motion model. Int. J. CARS 2022 17 10 1751 1764 10.1007/s11548‑022‑02676‑2 35639202
    [Google Scholar]
  6. McClelland J.R. Hawkes D.J. Schaeffter T. King A.P. Respiratory motion models: A review. Med. Image Anal. 2013 17 1 19 42 10.1016/j.media.2012.09.005 23123330
    [Google Scholar]
  7. Shen D. Davatzikos C. Hammer: Hierarchical attribute matching mechanism for elastic registration. Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001) 09-10 December Kauai, HI, USA 2001 29 36 10.1109/MMBIA.2001.991696
    [Google Scholar]
  8. Avants B. Epstein C. Grossman M. Gee J. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 2008 12 1 26 41 10.1016/j.media.2007.06.004 17659998
    [Google Scholar]
  9. Klein S. Staring M. Murphy K. Viergever M.A. Pluim J. Elastix: A toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 2010 29 1 196 205 10.1109/TMI.2009.2035616 19923044
    [Google Scholar]
  10. Balakrishnan G. Zhao A. Sabuncu M.R. Guttag J. Dalca A.V. Voxel- morph: A learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 2019 38 8 1788 1800 10.1109/TMI.2019.2897538
    [Google Scholar]
  11. Balik S. Weiss E. Jan N. Roman N. Sleeman W.C. Fatyga M. Christensen G.E. Zhang C. Murphy M.J. Lu J. Keall P. Williamson J.F. Hugo G.D. Evaluation of 4-dimensional computed tomography to 4-dimensional cone-beam computed tomography deformable image registration for lung cancer adaptive radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2013 86 2 372 379 10.1016/j.ijrobp.2012.12.023 23462422
    [Google Scholar]
  12. Clark K. Vendt B. Smith K. Freymann J. Kirby J. Koppel P. Moore S. Phillips S. Maffitt D. Pringle M. Tarbox L. Prior F. The cancer imaging archive (TCIA): Maintaining and operating a public information repository. J. Digit. Imaging 2013 26 6 1045 1057 10.1007/s10278‑013‑9622‑7 23884657
    [Google Scholar]
  13. Hugo G.D. Weiss E. Sleeman W.C. Balik S. Keall P.J. Lu J. Williamson J.F. A longitudinal four‐dimensional computed tomography and cone beam computed tomography dataset for image‐guided radiation therapy research in lung cancer. Med. Phys. 2017 44 2 762 771 10.1002/mp.12059 27991677
    [Google Scholar]
  14. Chen P. Guo Y. Wang D. Chen C. Dlung: Unsupervised few-shot diffeomorphic respiratory motion modeling. J. Shanghai Jiaotong Univ. 2023 28 536 545 36406811
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056325170250114210309
Loading
/content/journals/cmir/10.2174/0115734056325170250114210309
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Respiratory motion modeling ; Transfer learning ; Longitudinal data
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test