Skip to content
2000
image of CERVIXNET: An Efficient Approach for the Detection and Classifications of the Cervigram Images Using Modified Deep Learning Architecture

Abstract

Introduction:

The earlier detection of cervical cancer in women patients can save human life. This article proposes a novel methodology for detecting abnormal cervigram images from healthy cervigram images and segments the cancer regions in the abnormal cervigram images using the deep learning method. The conventional deep learning architecture has been modified into the proposed CervixNet architecture to improve the cervical cancer detection rate.

Methods:

This methodology is constituted of a training and testing process, where the training process generates the training sequences individually for healthy cervigram images and the cancer case cervigram images. The testing process tests the cervigram images into either a healthy or cancer cases using the training sequences generated through the training process. During the testing process of the proposed system, the cancer segmentation algorithm was applied on the abnormal cervigram image to detect and segment the pixels belonging to cancer. Finally, the performance has been carried out on the segmented cancer cervical images for the ground truth images. This proposed methodology has been evaluated on the cervigrams on IMODT and Guanacaste databases. Its performance has been analyzed concerning cancer pixel sensitivity, cancer pixel specificity and cancer pixel accuracy.

Results:

This research work obtains 98.69% Cancer Pixel Sensitivity (CPS), 98.76% Cancer Pixel Specificity (CPSP), and 99.27% Cancer Pixel Accuracy (CPA) for the set of cervigram images in the IMODT database. This research work obtains 99.22% CPS, 99.03% CPSP, and 99.01% CPA for the set of cervigram images in Guanacaste database.

Conclusion:

These experimental results of the proposed work have been significantly compared with the state-of-the-art methods and show the significance and novelty of the proposed works.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056343690250116020310
2025-01-23
2025-02-19
The full text of this item is not currently available.

References

  1. Sudha B. Kumar N.S. Sumathi S. Absence of knowledge and awareness about cervical cancer among educated women: A need for education about cervical cancer. Indian J. Gynecol. Oncol. 2022 20 1 11 10.1007/s40944‑022‑00611‑6
    [Google Scholar]
  2. Sachan P.L. Singh M. Patel M.L. Sachan R. A study on cervical cancer screening using pap smear test and clinical correlation. Asia Pac. J. Oncol. Nurs. 2018 5 3 337 341 10.4103/apjon.apjon_15_18 29963597
    [Google Scholar]
  3. Fekri-Ershad S. Pap smear classification using combination of global significant value, texture statistical features and time series features. Multimedia Tools Appl. 2019 78 22 31121 31136 10.1007/s11042‑019‑07937‑y
    [Google Scholar]
  4. Yan L. Song H. Guo Y. Ren P. Zhou W. Li S. Yang J. Shen X. HLDnet: Novel deep learning based Artificial Intelligence tool fuses acetic acid and Lugol’s iodine cervicograms for accurate pre-cancer screening. Biomed. Signal Process. Control 2022 71 103163 10.1016/j.bspc.2021.103163
    [Google Scholar]
  5. Chandran V. Sumithra M.G. Karthick A. ‘Diagnosis of cervical cancer based on ensemble deep learning network using colposcopy images,’ BioMed Research International, vol. 2021. Article ID 2021 5584004 1 15
    [Google Scholar]
  6. Kudva V. Prasad K. Guruvare S. Hybrid transfer learning for classification of uterine cervix images for cervical cancer screening. J. Digit. Imaging 2020 33 3 619 631 10.1007/s10278‑019‑00269‑1 31848896
    [Google Scholar]
  7. Miyagi Y. Takehara K. Miyake T. Application of deep learning to the classification of uterine cervical squamous epithelial lesion from colposcopy images. Mol. Clin. Oncol. 2019 11 6 583 589 31692958
    [Google Scholar]
  8. Adem K. Kiliçarslan S. Cömert O. Classification and diagnosis of cervical cancer with stacked autoencoder and softmax classification. Expert Syst. Appl. 2019 115 557 564 10.1016/j.eswa.2018.08.050
    [Google Scholar]
  9. Fernandes K. Cardoso J.S. Fernandes J. 2017 Transfer learning with partial observability applied to cervical cancer screening, Iberian Conference on Pattern Recognition and Image Analysis Cham , Springer, vol. 10255, pp.243-250 10.1007/978‑3‑319‑58838‑4_27
    [Google Scholar]
  10. Zhao C. Shuai R. Ma L. Liu W. Wu M. Improving cervical cancer classification with imbalanced datasets combining taming transformers with T2T-ViT. Multimedia Tools Appl. 2022 81 17 24265 24300 10.1007/s11042‑022‑12670‑0 35342326
    [Google Scholar]
  11. Karim Kutty S. Chandrasekhara Menon G. Enhancing convolutional neural network model with spectral features for the identification of cervical dysplasia. Int. J. Imaging Syst. Technol. 2022 32 6 1916 1927 10.1002/ima.22740
    [Google Scholar]
  12. Win K.P. Kitjaidure Y. Hamamoto K. Myo Aung T. Computer-assisted screening for cervical cancer using digital image processing of pap smear images. Appl. Sci. 2020 10 5 1800 10.3390/app10051800
    [Google Scholar]
  13. Ahishakiye E. Kanobe F. Optimizing cervical cancer classification using transfer learning with deep gaussian processes and support vector machines. Discover Artificial Intelligence 2024 4 1 73 10.1007/s44163‑024‑00185‑6
    [Google Scholar]
  14. Mathivanan S.K. Francis D. Srinivasan S. Khatavkar V. P K. Shah M.A. Enhancing cervical cancer detection and robust classification through a fusion of deep learning models. Sci. Rep. 2024 14 1 10812 10.1038/s41598‑024‑61063‑w 38734714
    [Google Scholar]
  15. Qathrady M.A. Shaf A. Ali T. Farooq U. Rehman A. Alqhtani S.M. Alshehri M.S. Almakdi S. Irfan M. Rahman S. Bade Eljak L.A. A novel web framework for cervical cancer detection system: A machine learning breakthrough. IEEE Access 2024 12 1 41542 41556 10.1109/ACCESS.2024.3377124
    [Google Scholar]
  16. Fosmore C.L. Sullivan S. Brouwer A.F. Goold S.D. Reisner S.L. Fendrick A.M. Harper D.M. Strategies to optimize cervical cancer screening rates among transgender and gender-diverse people assigned female at birth. J. Gen. Intern. Med. 2024 39 16 3333 3338 10.1007/s11606‑024‑09026‑9 39313668
    [Google Scholar]
  17. Sahay A. Gopakumar G. Gokulan S. Subham D. Thakur A. 2024 Applying machine learning algorithms to investigate cervical cancer, International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE) Bangalore, India, 24-25 January 2024, pp.1-5 10.1109/IITCEE59897.2024.10467311
    [Google Scholar]
  18. Brüggmann D. Quinkert-Schmolke K. Jaque J.M. Quarcoo D. Bohlmann M.K. Klingelhöfer D. Groneberg D.A. Global cervical cancer research: A scientometric density equalizing mapping and socioeconomic analysis. PLoS One 2022 17 1 e0261503 10.1371/journal.pone.0261503 34990465
    [Google Scholar]
  19. Burmeister C.A. Khan S.F. Schäfer G. Mbatani N. Adams T. Moodley J. Prince S. Cervical cancer therapies: Current challenges and future perspectives. Tumour Virus Res. 2022 13 200238 10.1016/j.tvr.2022.200238 35460940
    [Google Scholar]
  20. Schiffman M. Wentzensen N. Wacholder S. Kinney W. Gage J.C. Castle P.E. Human papillomavirus testing in the prevention of cervical cancer. J. Natl. Cancer Inst. 2011 103 5 368 383 10.1093/jnci/djq562 21282563
    [Google Scholar]
  21. Glučina M. Lorencin A. Anđelić N. Lorencin I. Cervical cancer diagnostics using machine learning algorithms and class balancing techniques. Appl. Sci. 2023 13 2 1061 10.3390/app13021061
    [Google Scholar]
  22. Ford S. Tarraf W. Williams K.P. Roman L.A. Leach R. Differences in cervical cancer screening and follow-up for black and white women in the United States. Gynecol. Oncol. 2021 160 2 369 374 10.1016/j.ygyno.2020.11.027 33323276
    [Google Scholar]
  23. Hou X. Shen G. Zhou L. Li Y. Wang T. Ma X. Artificial intelligence in cervical cancer screening and diagnosis. Front. Oncol. 2022 12 1 851367 851380 10.3389/fonc.2022.851367 35359358
    [Google Scholar]
  24. Luhn P. Walker J. Schiffman M. Zuna R.E. Dunn S.T. Gold M.A. Smith K. Mathews C. Allen R.A. Zhang R. Wang S. Wentzensen N. The role of co-factors in the progression from human papillomavirus infection to cervical cancer. Gynecol. Oncol. 2013 128 2 265 270 10.1016/j.ygyno.2012.11.003 23146688
    [Google Scholar]
  25. Elsalam S.M.A. Mokhtar O. Adel L. Hassan R. Ibraheim M. Kamal A. Impact of diffusion weighted magnetic resonance imaging in diagnosis of cervical cancer. Egypt. J. Radiol. Nucl. Med. 2020 51 1 1 8
    [Google Scholar]
  26. Kudva V. Prasad K. Guruvare S. Automation of detection of cervical cancer using convolutional neural networks. Crit. Rev. Biomed. Eng. 2018 46 2 135 145 10.1615/CritRevBiomedEng.2018026019 30055530
    [Google Scholar]
  27. Huang J. Wang T. Zheng D. He Y. Nucleus segmentation of cervical cytology images based on multi-scale fuzzy clustering algorithm. Bioengineered 2020 11 1 484 501 10.1080/21655979.2020.1747834 32279589
    [Google Scholar]
  28. William W. Ware A. Basaza-Ejiri A.H. Obungoloch J. A pap-smear analysis tool (PAT) for detection of cervical cancer from pap-smear images. Biomed. Eng. Online 2019 18 1 16 10.1186/s12938‑019‑0634‑5 30755214
    [Google Scholar]
  29. Alsubai S. Alqahtani A. Sha M. Almadhor A. Abbas S. Mughal H. Gregus M. Privacy preserved cervical cancer detection using convolutional neural networks applied to pap smear images. Comput. Math. Methods Med. 2023 2023 1 9676206 10.1155/2023/9676206 37455684
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056343690250116020310
Loading
/content/journals/cmir/10.2174/0115734056343690250116020310
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Cervical ; Cervigram ; Cancer ; Deep learning ; CervixNet
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test