Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background

Applications of artificial intelligence (AI) in medical ultrasound have rapidly grown in recent years. Therefore, it is necessary to identify and visualize global research trends and hotspots of AI in medical ultrasound to provide guidance for further exploitation.

Objective

This study aims to highlight the global research trends and hotspots of the top 100 most-cited papers related to AI in medical ultrasound by combining quantitative and visualization methods.

Methods

Articles on AI in medical ultrasound were selected from the WoSCC database and ranked by citation count. After identifying the 100 most-cited papers, we conducted a quantitative and visualized analysis of bibliometric characteristics, including leading research countries, prominent institutions, key authors and journals, author clusters and collaborations, and keyword co-occurrence network analysis.

Results

The top 100 highly cited papers from the WoSCC database were published between 1999 and 2021, with total citations ranging from 91 to 1580. The most cited article was published in IEEE Transactions on Medical Imaging. The top three most prolific countries/regions were the United States, mainland China, and the United Kingdom. The most published institutions and journals were Idaho University and IEEE Transactions on Medical Imaging. Twelve authors published more than four papers, with Suri, JS being the most productive author. The most studied topics were “ultrasound”, “computer-aided diagnosis”, and “segmentation”. Ultrasonography of Superficial Organs was the main site that was studied the most.

Conclusion

This study provides comprehensive insights into the characteristics of AI in medical ultrasound through quantitative and visualized analysis of the most highly cited literature. It serves as a valuable reference for the development and applications of AI, fostering potential collaborations within this domain.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056324388240919112351
2024-01-01
2025-04-24
The full text of this item is not currently available.

References

  1. GomesB. AshleyE.A. Artificial intelligence in molecular medicine.N. Engl. J. Med.2023388262456246510.1056/NEJMra220478737379136
    [Google Scholar]
  2. NovakovskyG. DexterN. LibbrechtM.W. WassermanW.W. MostafaviS. Obtaining genetics insights from deep learning via explainable artificial intelligence.Nat. Rev. Genet.202324212513710.1038/s41576‑022‑00532‑236192604
    [Google Scholar]
  3. TangJ. ZhouQ. HuangY. Self-Supervised Learning for Non-Rigid Registration Between Near-Isometric 3D Surfaces in Medical Imaging.IEEE Trans. Med. Imaging202342251953210.1109/TMI.2022.321866236318555
    [Google Scholar]
  4. DerryA. KrzywinskiM. AltmanN. Convolutional neural networks.Nat. Methods20232091269127010.1038/s41592‑023‑01973‑137580560
    [Google Scholar]
  5. SofferS. Ben-CohenA. ShimonO. AmitaiM.M. GreenspanH. KlangE. Convolutional neural networks for radiologic images: A radiologist’s guide.Radiology2019290359060610.1148/radiol.201818054730694159
    [Google Scholar]
  6. LiZ. LiuF. YangW. PengS. ZhouJ. A survey of convolutional neural networks: Analysis, applications, and prospects.IEEE Trans. Neural Netw. Learn. Syst.202233126999701910.1109/TNNLS.2021.308482734111009
    [Google Scholar]
  7. HaugC.J. DrazenJ.M. Artificial intelligence and machine learning in clinical medicine, 2023.N. Engl. J. Med.2023388131201120810.1056/NEJMra230203836988595
    [Google Scholar]
  8. ShenY.T. ChenL. YueW.W. XuH.X. Artificial intelligence in ultrasound.Eur. J. Radiol.202113910971710.1016/j.ejrad.2021.10971733962110
    [Google Scholar]
  9. SubhanS. MalikJ. HaqA. QadeerM.S. ZaidiS.M.J. OroojF. ZamanH. MehmoodiA. MajeediU. Role of artificial intelligence and machine learning in interventional cardiology.Curr. Probl. Cardiol.202348710169810.1016/j.cpcardiol.2023.10169836921654
    [Google Scholar]
  10. HaE.J. LeeJ.H. LeeD.H. Artificial intelligence model assisting thyroid nodule diagnosis and management: A multicenter diagnostic study.J. Clin. Endocrinol. Metab.202310.1210/clinem/dgad50337622451
    [Google Scholar]
  11. HamyoonH. Yee ChanW. MohammadiA. Yusuf KuzanT. Mirza-Aghazadeh-AttariM. LeongW.L. Murzoglu AltintoprakK. VijayananthanA. RahmatK. Ab MuminN. Sam LeongS. EjtehadifarS. FaeghiF. AbolghasemiJ. CiaccioE.J. Rajendra AcharyaU. Abbasian ArdakaniA. Artificial intelligence, BI-RADS evaluation and morphometry: A novel combination to diagnose breast cancer using ultrasonography, results from multi-center cohorts.Eur. J. Radiol.202215711059110.1016/j.ejrad.2022.11059136356463
    [Google Scholar]
  12. Ramirez ZegarraR. GhiT. Use of artificial intelligence and deep learning in fetal ultrasound imaging.Ultrasound Obstet. Gynecol.202362218519410.1002/uog.2613036436205
    [Google Scholar]
  13. NaderR. BourcierR. AutrusseauF. Using deep learning for an automatic detection and classification of the vascular bifurcations along the Circle of Willis.Med. Image Anal.20238910291910.1016/j.media.2023.10291937619447
    [Google Scholar]
  14. JiangD. JiT. LiuW. BednarschJ. SelznerM. PratschkeJ. LurjeG. CaoT. BrüggenwirthI.M.A. MartinsP.N. Arke LangS. Peter NeumannU. CziganyZ. Four decades of clinical liver transplantation research: Results of a comprehensive bibliometric analysis.Transplantation2022106101897190810.1097/TP.000000000000422435831925
    [Google Scholar]
  15. HeZ. DaiL. ZuoY. ChenY. WangH. ZengH. Hotspots and frontiers in pulmonary arterial hypertension research: A bibliometric and visualization analysis from 2011 to 2020.Bioengineered2022136146671468010.1080/21655979.2022.210006435880647
    [Google Scholar]
  16. LiH. WuH. AbakumovM.A. XuY. LinY. ChekhoninV.P. PeltzerK. AbbasK.S. LiS. ZhangC. The 100 most cited papers on bone metastasis: A bibliometric analysis.J. Bone Oncol.20223510044310.1016/j.jbo.2022.10044335815184
    [Google Scholar]
  17. TajbakhshN. ShinJ.Y. GuruduS.R. HurstR.T. KendallC.B. GotwayM.B. LiangJ. Convolutional neural networks for medical image analysis: Full training or fine tuning?IEEE Trans. Med. Imaging20163551299131210.1109/TMI.2016.253530226978662
    [Google Scholar]
  18. RuedaS. FathimaS. KnightC.L. YaqubM. PapageorghiouA.T. RahmatullahB. FoiA. MaggioniM. PepeA. TohkaJ. StebbingR.V. McManigleJ.E. CiurteA. BressonX. CuadraM.B. SunC. PonomarevG.V. GelfandM.S. KazanovM.D. WangC.W. ChenH.C. PengC.W. HungC.M. NobleJ.A. Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: A grand challenge.IEEE Trans. Med. Imaging201433479781310.1109/TMI.2013.227694323934664
    [Google Scholar]
  19. XiaD. ChenG. WuK. YuM. ZhangZ. LuY. XuL. WangY. Research progress and hotspot of the artificial intelligence application in the ultrasound during 2011–2021: A bibliometric analysis.Front. Public Health20221099070810.3389/fpubh.2022.99070836187670
    [Google Scholar]
  20. ByraM. GalperinM. Ojeda-FournierH. OlsonL. O’BoyleM. ComstockC. AndreM. Breast mass classification in sonography with transfer learning using a deep convolutional neural network and color conversion.Med. Phys.201946274675510.1002/mp.1336130589947
    [Google Scholar]
  21. XuY. WangY. YuanJ. ChengQ. WangX. CarsonP.L. Medical breast ultrasound image segmentation by machine learning.Ultrasonics2019911910.1016/j.ultras.2018.07.00630029074
    [Google Scholar]
  22. FujiokaT. KubotaK. MoriM. KikuchiY. KatsutaL. KasaharaM. OdaG. IshibaT. NakagawaT. TateishiU. Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network.Jpn. J. Radiol.201937646647210.1007/s11604‑019‑00831‑530888570
    [Google Scholar]
  23. LeE.P.V. WangY. HuangY. HickmanS. GilbertF.J. Artificial intelligence in breast imaging.Clin. Radiol.201974535736610.1016/j.crad.2019.02.00630898381
    [Google Scholar]
  24. LiX. ZhangS. ZhangQ. WeiX. PanY. ZhaoJ. XinX. QinC. WangX. LiJ. YangF. ZhaoY. YangM. WangQ. ZhengZ. ZhengX. YangX. WhitlowC.T. GurcanM.N. ZhangL. WangX. PascheB.C. GaoM. ZhangW. ChenK. Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: A retrospective, multicohort, diagnostic study.Lancet Oncol.201920219320110.1016/S1470‑2045(18)30762‑930583848
    [Google Scholar]
  25. WangL. YangS. YangS. ZhaoC. TianG. GaoY. ChenY. LuY. Automatic thyroid nodule recognition and diagnosis in ultrasound imaging with the YOLOv2 neural network.World J. Surg. Oncol.20191711210.1186/s12957‑019‑1558‑z30621704
    [Google Scholar]
  26. LiuX. FaesL. KaleA.U. WagnerS.K. FuD.J. BruynseelsA. MahendiranT. MoraesG. ShamdasM. KernC. LedsamJ.R. SchmidM.K. BalaskasK. TopolE.J. BachmannL.M. KeaneP.A. DennistonA.K. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A systematic review and meta-analysis.Lancet Digit. Health201916e271e29710.1016/S2589‑7500(19)30123‑233323251
    [Google Scholar]
  27. AkkusZ. CaiJ. BoonrodA. ZeinoddiniA. WestonA.D. PhilbrickK.A. EricksonB.J. A survey of deep-learning applications in ultrasound: artificial intelligence–powered ultrasound for improving clinical workflow.J. Am. Coll. Radiol.20191699 Pt B1318132810.1016/j.jacr.2019.06.00431492410
    [Google Scholar]
  28. HyunD. BricksonL.L. LoobyK.T. DahlJ.J. Beamforming and speckle reduction using neural networks.IEEE Trans. Ultrason. Ferroelectr. Freq. Control201966589891010.1109/TUFFC.2019.290379530869612
    [Google Scholar]
  29. ShengfengL YiW XinY Deep learning in medical ultrasound analysis: A review.Engineering20195226127510.1016/j.eng.2018.11.020
    [Google Scholar]
  30. XuG. JinB. XianX. YangH. ZhaoH. DuS. MakuuchiM. PawlikT.M. MaoY. Evolutions in the management of hepatocellular carcinoma over last 4 decades: An analysis from the 100 most influential articles in the field.Liver Cancer202110213715010.1159/00051341233977090
    [Google Scholar]
  31. HughesH. O’ReillyM. McVeighN. RyanR. The top 100 most cited articles on artificial intelligence in radiology: A bibliometric analysis.Clin. Radiol.20237829910610.1016/j.crad.2022.09.13336639176
    [Google Scholar]
  32. ParmarA. GaneshR. MishraA.K. The top 100 cited articles on Obsessive Compulsive Disorder (OCD): A citation analysis.Asian J. Psychiatr.201942344110.1016/j.ajp.2019.03.02530951931
    [Google Scholar]
  33. JiaP. HuR. PeiG. DaiY. WangY.Y. ZhaoZ. Deep generative neural network for accurate drug response imputation.Nat. Commun.2021121174010.1038/s41467‑021‑21997‑533741950
    [Google Scholar]
  34. HauserK. KurzA. HaggenmüllerS. MaronR.C. von KalleC. UtikalJ.S. MeierF. HobelsbergerS. GellrichF.F. SergonM. HauschildA. FrenchL.E. HeinzerlingL. SchlagerJ.G. GhoreschiK. SchlaakM. HilkeF.J. PochG. KutznerH. BerkingC. HepptM.V. ErdmannM. HaferkampS. SchadendorfD. SondermannW. GoebelerM. SchillingB. KatherJ.N. FröhlingS. LipkaD.B. HeklerA. Krieghoff-HenningE. BrinkerT.J. Explainable artificial intelligence in skin cancer recognition: A systematic review.Eur. J. Cancer2022167546910.1016/j.ejca.2022.02.02535390650
    [Google Scholar]
  35. GuQ. PatelA. HannaM.G. LennerzJ.K. GarciaC. ZarellaM. McClintockD. HartS.N. Bridging the clinical-computational transparency gap in digital pathology.Arch. Pathol. Lab. Med.202410.5858/arpa.2023‑0250‑RA38871349
    [Google Scholar]
  36. DanielsK. GummadiS. ZhuZ. WangS. PatelJ. SwendseidB. LyshchikA. CurryJ. CottrillE. EisenbreyJ. Machine learning by ultrasonography for genetic risk stratification of thyroid nodules.JAMA Otolaryngol. Head Neck Surg.20201461364110.1001/jamaoto.2019.307331647509
    [Google Scholar]
  37. ChengH.D. ShanJ. JuW. GuoY. ZhangL. Automated breast cancer detection and classification using ultrasound images: A survey.Pattern Recognit.201043129931710.1016/j.patcog.2009.05.012
    [Google Scholar]
  38. ChengJ.Z. NiD. ChouY.H. QinJ. TiuC.M. ChangY.C. HuangC.S. ShenD. ChenC.M. Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in us images and pulmonary nodules in CT scans.Sci. Rep.2016612445410.1038/srep2445427079888
    [Google Scholar]
  39. HuangY.L. ChenD.R. Watershed segmentation for breast tumor in 2-D sonography.Ultrasound Med. Biol.200430562563210.1016/j.ultrasmedbio.2003.12.00115183228
    [Google Scholar]
  40. ChristodoulouC.I. PattichisC.S. PantziarisM. NicolaidesA. Texture-based classification of atherosclerotic carotid plaques.IEEE Trans. Med. Imaging200322790291210.1109/TMI.2003.81506612906244
    [Google Scholar]
  41. JooS. YangY.S. MoonW.K. KimH.C. Computer-aided diagnosis of solid breast nodules: Use of an artificial neural network based on multiple sonographic features.IEEE Trans. Med. Imaging200423101292130010.1109/TMI.2004.83461715493696
    [Google Scholar]
  42. ChenH. NiD. QinJ. LiS. YangX. WangT. HengP.A. Standard plane localization in fetal ultrasound via domain transferred deep neural networks.IEEE J. Biomed. Health Inform.20151951627163610.1109/JBHI.2015.242504125910262
    [Google Scholar]
  43. GibsonE. LiW. SudreC. FidonL. ShakirD.I. WangG. Eaton-RosenZ. GrayR. DoelT. HuY. WhyntieT. NachevP. ModatM. BarrattD.C. OurselinS. CardosoM.J. VercauterenT. NiftyNet: A deep-learning platform for medical imaging.Comput. Methods Programs Biomed.201815811312210.1016/j.cmpb.2018.01.02529544777
    [Google Scholar]
  44. KarimiD. SalcudeanS.E. Reducing the hausdorff distance in medical image segmentation with convolutional neural networks.IEEE Trans. Med. Imaging202039249951310.1109/TMI.2019.293006831329113
    [Google Scholar]
  45. YapM.H. PonsG. MartíJ. GanauS. SentísM. ZwiggelaarR. DavisonA.K. MartíR. PonsG. MartiJ. GanauS. SentisM. ZwiggelaarR. DavisonA.K. MartiR. Moi Hoon Yap Automated breast ultrasound lesions detection using convolutional neural networks.IEEE J. Biomed. Health Inform.20182241218122610.1109/JBHI.2017.273187328796627
    [Google Scholar]
  46. ChenC.M. ChouY.H. HanK.C. HungG.S. TiuC.M. ChiouH.J. ChiouS.Y. Breast lesions on sonograms: Computer-aided diagnosis with nearly setting-independent features and artificial neural networks.Radiology2003226250451410.1148/radiol.226201184312563146
    [Google Scholar]
  47. HuangQ. HuangY. LuoY. YuanF. LiX. Segmentation of breast ultrasound image with semantic classification of superpixels.Med. Image Anal.20206110165710.1016/j.media.2020.10165732032899
    [Google Scholar]
  48. ChenD.R. ChangR.F. HuangY.L. Computer-aided diagnosis applied to US of solid breast nodules by using neural networks.Radiology1999213240741210.1148/radiology.213.2.r99nv1340710551220
    [Google Scholar]
  49. ChiJ. WaliaE. BabynP. WangJ. GrootG. EramianM. Thyroid nodule classification in ultrasound images by fine-tuning deep convolutional neural network.J. Digit. Imaging201730447748610.1007/s10278‑017‑9997‑y28695342
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056324388240919112351
Loading
/content/journals/cmir/10.2174/0115734056324388240919112351
Loading

Data & Media loading...

Supplements

Supplementary material is available on the Publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test