Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Objective

This prospective study aimed to establish the typical viscosity range of the thyroid gland in healthy individuals using a new method called the Sound Touch Viscosity (STVi) technique with a linear array transducer.

Methods

Seventy-eight healthy volunteers were enrolled between March, 2023 and April, 2023. Thyroid viscosity was measured using the Resona R9 ultrasound system equipped with a linear array transducer (L15-3WU). Each patient had three valid viscosity measurements taken for each thyroid lobe, and the average values were analyzed. Thyroid gland stiffness was measured and analyzed simultaneously.

Results

The study included 51 women and 27 men with an average age of 48 years. The mean viscosity measurement for a normal thyroid gland was 1.10 ± 0.41 Pa.s (ranging from 0.38 to 2.25 Pa.s). There were no significant differences in viscosity between the left and right lobes of the thyroid gland. We found no significant variations in viscosity based on gender, age, or body mass index (BMI). There was a notable positive correlation between thyroid viscosity and stiffness measurements ( = 0.717, < 0.001).

Conclusion

Our findings suggest that STVi is a highly reliable method for assessing the thyroid. This technique holds promise as a new, non-invasive approach to evaluating thyroid parenchyma viscosity.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056335791241202115022
2025-01-02
2025-07-12
The full text of this item is not currently available.

References

  1. TylochD.J. TylochJ.F. AdamowiczJ. DługoszN.I. GrzankaD. BredaV.S. DrewaT. Comparison of strain and shear wave elastography in prostate cancer detection.Ultrasound Med. Biol.202349388990010.1016/j.ultrasmedbio.2022.11.01536572589
    [Google Scholar]
  2. ChambaraN. LoX. ChowT.C.M. LaiC.M.S. LiuS.Y.W. YingM. Combined shear wave elastography and eu tirads in differentiating malignant and benign thyroid nodules.Cancers20221422552110.3390/cancers1422552136428614
    [Google Scholar]
  3. ImajoK. HondaY. KobayashiT. NagaiK. OzakiA. IwakiM. KessokuT. OgawaY. TakahashiH. SaigusaY. YonedaM. KirikoshiH. UtsunomiyaD. AishimaS. SaitoS. NakajimaA. Direct comparison of US and MR elastography for staging liver fibrosis in patients with nonalcoholic fatty liver disease.Clin. Gastroenterol. Hepatol.2022204908917.e1110.1016/j.cgh.2020.12.01633340780
    [Google Scholar]
  4. ShiinaT. NightingaleK.R. PalmeriM.L. HallT.J. BamberJ.C. BarrR.G. CasteraL. ChoiB.I. ChouY.H. CosgroveD. DietrichC.F. DingH. AmyD. FarrokhA. FerraioliG. FiliceC. RustF.M. NakashimaK. SchaferF. SporeaI. SuzukiS. WilsonS. KudoM. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: Basic principles and terminology.Ultrasound Med. Biol.20154151126114710.1016/j.ultrasmedbio.2015.03.00925805059
    [Google Scholar]
  5. HossainM.M. GallippiC.M. Viscoelastic response ultrasound derived relative elasticity and relative viscosity reflect true elasticity and viscosity: In silico and experimental demonstration.IEEE Trans. Ultrason. Ferroelectr. Freq. Control20206761102111710.1109/TUFFC.2019.296278931899421
    [Google Scholar]
  6. DietrichC.F. BamberJ. BerzigottiA. BotaS. CantisaniV. CasteraL. CosgroveD. FerraioliG. RustF.M. GiljaO.H. GoertzR.S. KarlasT. de KnegtR. de LedinghenV. PiscagliaF. ProcopetB. SaftoiuA. SidhuP.S. SporeaI. ThieleM. EFSUMB guidelines and recommendations on the clinical use of liver ultrasound elastography, update 2017 (long version).Ultraschall Med.2017384e16e4728407655
    [Google Scholar]
  7. SugimotoK. MoriyasuF. OshiroH. TakeuchiH. YoshimasuY. KasaiY. FuruichiY. ItoiT. Viscoelasticity measurement in rat livers using shear-wave US elastography.Ultrasound Med. Biol.20184492018202410.1016/j.ultrasmedbio.2018.05.00829936025
    [Google Scholar]
  8. GhezelbashF. LiuS. AdlS.A. LiJ. Blood clot behaves as a poro-visco-elastic material.J. Mech. Behav. Biomed. Mater.202212810510110.1016/j.jmbbm.2022.10510135124354
    [Google Scholar]
  9. TangY. KongW. ZhaoJ. ChenY. LiuL. ZhangG. Can viscoelasticity measurements obtained through shear-wave US elastography be used to monitor hepatic ischemia-reperfusion injury and treatment response? An animal study.Ultrasound Med. Biol.20204692464247110.1016/j.ultrasmedbio.2020.04.02132553529
    [Google Scholar]
  10. ZhuY. DongC. YinY. ChenX. GuoY. ZhengY. ShenY. WangT. ZhangX. ChenS. The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.Ultrasound Med. Biol.201541260160910.1016/j.ultrasmedbio.2014.09.02825542484
    [Google Scholar]
  11. GarcovichM. ParatoreM. AinoraM.E. RiccardiL. PompiliM. GasbarriniA. ZoccoM.A. Shear wave dispersion in chronic liver disease: From physical principles to clinical usefulness.J. Pers. Med.202313694510.3390/jpm1306094537373934
    [Google Scholar]
  12. SugimotoK. MoriyasuF. OshiroH. TakeuchiH. YoshimasuY. KasaiY. ItoiT. Clinical utilization of shear wave dispersion imaging in diffuse liver disease.Ultrasonography202039131010.14366/usg.1903131645092
    [Google Scholar]
  13. KaraT. AteşF. DurmazM.S. AkyürekN. DurmazF.G. ÖzbakırB. ÖztürkM. Assessment of thyroid gland elasticity with shear-wave elastography in Hashimoto’s thyroiditis patients.J. Ultrasound202023454355110.1007/s40477‑020‑00437‑y32185701
    [Google Scholar]
  14. StoianD. MoisaL. TabanL. SporeaI. PopaA. BendeF. PopescuA. BorleaA. Quantification of thyroid viscosity in healthy subjects using ultrasound shear wave dispersion (Viscosity Plus).Diagnostics2022129219410.3390/diagnostics1209219436140595
    [Google Scholar]
  15. BaleaP.D.R. SolomonC. MunteanD. DulgheriuI.T. SilaghiC. DudeaS. Viscosity plane-wave ultrasound (Vi PLUS) in the evaluation of thyroid gland in healthy volunteers—A preliminary study.Diagnostics20221210247410.3390/diagnostics1210247436292163
    [Google Scholar]
  16. RouzeN.C. DengY. TrutnaC.A. PalmeriM.L. NightingaleK.R. Characterization of viscoelastic materials using group shear wave speeds.IEEE Trans. Ultrason. Ferroelectr. Freq. Control201865578079410.1109/TUFFC.2018.281550529733281
    [Google Scholar]
  17. PopaA. SporeaI. BendeF. PopescuA. FofiuR. BorleaA. BâldeaV. PascuA. FonceaC.G. CotrăuR. ȘirliR. The non-invasive ultrasound-based assessment of liver viscosity in a healthy cohort.Diagnostics2022126145110.3390/diagnostics1206145135741261
    [Google Scholar]
  18. DeffieuxT. GennissonJ.L. BousquetL. CorougeM. CosconeaS. AmrounD. TriponS. TerrisB. MalletV. SogniP. TanterM. PolS. Investigating liver stiffness and viscosity for fibrosis, steatosis and activity staging using shear wave elastography.J. Hepatol.201562231732410.1016/j.jhep.2014.09.02025251998
    [Google Scholar]
  19. RiannaC. RadmacherM. Comparison of viscoelastic properties of cancer and normal thyroid cells on different stiffness substrates.Eur. Biophys. J.201746430932410.1007/s00249‑016‑1168‑427645213
    [Google Scholar]
  20. WoodB.G. KijankaP. LiuH.C. UrbanM.W. Evaluation of robustness of local phase velocity imaging in homogenous tissue-mimicking phantoms.Ultrasound Med. Biol.202147123514352810.1016/j.ultrasmedbio.2021.08.00234456084
    [Google Scholar]
  21. KishimotoR. SugaM. UsumuraM. IijimaH. YoshidaM. HachiyaH. ShiinaT. YamakawaM. KonnoK. ObataT. YamaguchiT. Shear wave speed measurement bias in a viscoelastic phantom across six ultrasound elastography systems: A comparative study with transient elastography and magnetic resonance elastography.J. Med. Ultra.202249214315210.1007/s10396‑022‑01190‑x
    [Google Scholar]
  22. SebagF. LombardV.J. BerbisJ. GrisetV. HenryJ.F. PetitP. OliverC. Shear wave elastography: A new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules.J. Clin. Endocrinol. Metab.201095125281528810.1210/jc.2010‑076620881263
    [Google Scholar]
  23. BhatiaK.S.S. TongC.S.L. ChoC.C.M. YuenE.H.Y. LeeY.Y.P. AhujaA.T. Shear wave elastography of thyroid nodules in routine clinical practice: Preliminary observations and utility for detecting malignancy.Eur. Radiol.201222112397240610.1007/s00330‑012‑2495‑122645042
    [Google Scholar]
  24. VladM. GoluI. BotaS. VladA. TimarB. TimarR. SporeaI. Real-time shear wave elastography may predict autoimmune thyroid disease.Wien. Klin. Wochenschr.20151279-1033033610.1007/s00508‑015‑0754‑225835593
    [Google Scholar]
  25. MaralescuF.M. BendeF. SporeaI. PopescuA. SirliR. SchillerA. PetricaL. MiutescuB. BorleaA. PopaA. BodeaM. BobF. Non-invasive evaluation of kidney elasticity and viscosity in a healthy cohort.Biomedicines20221011285910.3390/biomedicines1011285936359379
    [Google Scholar]
  26. DulgheriuI.T. SolomonC. MunteanD. BaleaP.R. LenghelM. CiureaA. DudeaS. Shear-wave elastography and viscosity plus for the assessment of peripheric muscles in healthy subjects: A pre- and post-contraction study.Diagnostics2022129213810.3390/diagnostics1209213836140536
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056335791241202115022
Loading
/content/journals/cmir/10.2174/0115734056335791241202115022
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test