Skip to content
2000
image of Sound Touch Viscosity (STVi) for Thyroid Gland Evaluation in Healthy Individuals: A Pilot Study : STVi for Thyroid Gland Evaluation

Abstract

Objective:

This prospective study aimed to establish the typical viscosity range of the thyroid gland in healthy individuals using a new method called the Sound Touch Viscosity (STVi) technique with a linear array transducer.

Methods:

Seventy-eight healthy volunteers were enrolled between March, 2023 and April, 2023. Thyroid viscosity was measured using the Resona R9 ultrasound system equipped with a linear array transducer (L15-3WU). Each patient had three valid viscosity measurements taken for each thyroid lobe, and the average values were analyzed. Thyroid gland stiffness was measured and analyzed simultaneously.

Results:

The study included 51 women and 27 men with an average age of 48 years. The mean viscosity measurement for a normal thyroid gland was 1.10 ± 0.41 Pa.s (ranging from 0.38 to 2.25 Pa.s). There were no significant differences in viscosity between the left and right lobes of the thyroid gland. We found no significant variations in viscosity based on gender, age, or body mass index (BMI). There was a notable positive correlation between thyroid viscosity and stiffness measurements ( = 0.717, < 0.001).

Conclusion:

Our findings suggest that STVi is a highly reliable method for assessing the thyroid. This technique holds promise as a new, non-invasive approach to evaluating thyroid parenchyma viscosity.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056335791241202115022
2025-01-02
2025-01-18
Loading full text...

Full text loading...

/deliver/fulltext/cmir/10.2174/0115734056335791241202115022/e15734056335791.html?itemId=/content/journals/cmir/10.2174/0115734056335791241202115022&mimeType=html&fmt=ahah

References

  1. Tyloch D.J. Tyloch J.F. Adamowicz J. Długosz N.I. Grzanka D. Breda V.S. Drewa T. Comparison of strain and shear wave elastography in prostate cancer detection. Ultrasound Med. Biol. 2023 49 3 889 900 10.1016/j.ultrasmedbio.2022.11.015 36572589
    [Google Scholar]
  2. Chambara N. Lo X. Chow T.C.M. Lai C.M.S. Liu S.Y.W. Ying M. Combined shear wave elastography and eu tirads in differentiating malignant and benign thyroid nodules. Cancers 2022 14 22 5521 10.3390/cancers14225521 36428614
    [Google Scholar]
  3. Imajo K. Honda Y. Kobayashi T. Nagai K. Ozaki A. Iwaki M. Kessoku T. Ogawa Y. Takahashi H. Saigusa Y. Yoneda M. Kirikoshi H. Utsunomiya D. Aishima S. Saito S. Nakajima A. Direct comparison of US and MR elastography for staging liver fibrosis in patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2022 20 4 908 917.e11 10.1016/j.cgh.2020.12.016 33340780
    [Google Scholar]
  4. Shiina T. Nightingale K.R. Palmeri M.L. Hall T.J. Bamber J.C. Barr R.G. Castera L. Choi B.I. Chou Y.H. Cosgrove D. Dietrich C.F. Ding H. Amy D. Farrokh A. Ferraioli G. Filice C. Rust F.M. Nakashima K. Schafer F. Sporea I. Suzuki S. Wilson S. Kudo M. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: Basic principles and terminology. Ultrasound Med. Biol. 2015 41 5 1126 1147 10.1016/j.ultrasmedbio.2015.03.009 25805059
    [Google Scholar]
  5. Hossain M.M. Gallippi C.M. Viscoelastic response ultrasound derived relative elasticity and relative viscosity reflect true elasticity and viscosity: In silico and experimental demonstration. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020 67 6 1102 1117 10.1109/TUFFC.2019.2962789 31899421
    [Google Scholar]
  6. Dietrich C.F. Bamber J. Berzigotti A. Bota S. Cantisani V. Castera L. Cosgrove D. Ferraioli G. Rust F.M. Gilja O.H. Goertz R.S. Karlas T. de Knegt R. de Ledinghen V. Piscaglia F. Procopet B. Saftoiu A. Sidhu P.S. Sporea I. Thiele M. EFSUMB guidelines and recommendations on the clinical use of liver ultrasound elastography, update 2017 (long version). Ultraschall Med. 2017 38 4 e16 e47 28407655
    [Google Scholar]
  7. Sugimoto K. Moriyasu F. Oshiro H. Takeuchi H. Yoshimasu Y. Kasai Y. Furuichi Y. Itoi T. Viscoelasticity measurement in rat livers using shear-wave US elastography. Ultrasound Med. Biol. 2018 44 9 2018 2024 10.1016/j.ultrasmedbio.2018.05.008 29936025
    [Google Scholar]
  8. Ghezelbash F. Liu S. Adl S.A. Li J. Blood clot behaves as a poro-visco-elastic material. J. Mech. Behav. Biomed. Mater. 2022 128 105101 10.1016/j.jmbbm.2022.105101 35124354
    [Google Scholar]
  9. Tang Y. Kong W. Zhao J. Chen Y. Liu L. Zhang G. Can viscoelasticity measurements obtained through shear-wave US elastography be used to monitor hepatic ischemia-reperfusion injury and treatment response? An animal study. Ultrasound Med. Biol. 2020 46 9 2464 2471 10.1016/j.ultrasmedbio.2020.04.021 32553529
    [Google Scholar]
  10. Zhu Y. Dong C. Yin Y. Chen X. Guo Y. Zheng Y. Shen Y. Wang T. Zhang X. Chen S. The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography. Ultrasound Med. Biol. 2015 41 2 601 609 10.1016/j.ultrasmedbio.2014.09.028 25542484
    [Google Scholar]
  11. Garcovich M. Paratore M. Ainora M.E. Riccardi L. Pompili M. Gasbarrini A. Zocco M.A. Shear wave dispersion in chronic liver disease: From physical principles to clinical usefulness. J. Pers. Med. 2023 13 6 945 10.3390/jpm13060945 37373934
    [Google Scholar]
  12. Sugimoto K. Moriyasu F. Oshiro H. Takeuchi H. Yoshimasu Y. Kasai Y. Itoi T. Clinical utilization of shear wave dispersion imaging in diffuse liver disease. Ultrasonography 2020 39 1 3 10 10.14366/usg.19031 31645092
    [Google Scholar]
  13. Kara T. Ateş F. Durmaz M.S. Akyürek N. Durmaz F.G. Özbakır B. Öztürk M. Assessment of thyroid gland elasticity with shear-wave elastography in Hashimoto’s thyroiditis patients. J. Ultrasound 2020 23 4 543 551 10.1007/s40477‑020‑00437‑y 32185701
    [Google Scholar]
  14. Stoian D. Moisa L. Taban L. Sporea I. Popa A. Bende F. Popescu A. Borlea A. Quantification of thyroid viscosity in healthy subjects using ultrasound shear wave dispersion (Viscosity Plus). Diagnostics 2022 12 9 2194 10.3390/diagnostics12092194 36140595
    [Google Scholar]
  15. Balea P.D.R. Solomon C. Muntean D. Dulgheriu I.T. Silaghi C. Dudea S. Viscosity plane-wave ultrasound (Vi PLUS) in the evaluation of thyroid gland in healthy volunteers—A preliminary study. Diagnostics 2022 12 10 2474 10.3390/diagnostics12102474 36292163
    [Google Scholar]
  16. Rouze N.C. Deng Y. Trutna C.A. Palmeri M.L. Nightingale K.R. Characterization of viscoelastic materials using group shear wave speeds. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018 65 5 780 794 10.1109/TUFFC.2018.2815505 29733281
    [Google Scholar]
  17. Popa A. Sporea I. Bende F. Popescu A. Fofiu R. Borlea A. Bâldea V. Pascu A. Foncea C.G. Cotrău R. Șirli R. The non-invasive ultrasound-based assessment of liver viscosity in a healthy cohort. Diagnostics 2022 12 6 1451 10.3390/diagnostics12061451 35741261
    [Google Scholar]
  18. Deffieux T. Gennisson J.L. Bousquet L. Corouge M. Cosconea S. Amroun D. Tripon S. Terris B. Mallet V. Sogni P. Tanter M. Pol S. Investigating liver stiffness and viscosity for fibrosis, steatosis and activity staging using shear wave elastography. J. Hepatol. 2015 62 2 317 324 10.1016/j.jhep.2014.09.020 25251998
    [Google Scholar]
  19. Rianna C. Radmacher M. Comparison of viscoelastic properties of cancer and normal thyroid cells on different stiffness substrates. Eur. Biophys. J. 2017 46 4 309 324 10.1007/s00249‑016‑1168‑4 27645213
    [Google Scholar]
  20. Wood B.G. Kijanka P. Liu H.C. Urban M.W. Evaluation of robustness of local phase velocity imaging in homogenous tissue-mimicking phantoms. Ultrasound Med. Biol. 2021 47 12 3514 3528 10.1016/j.ultrasmedbio.2021.08.002 34456084
    [Google Scholar]
  21. Kishimoto R. Suga M. Usumura M. Iijima H. Yoshida M. Hachiya H. Shiina T. Yamakawa M. Konno K. Obata T. Yamaguchi T. Shear wave speed measurement bias in a viscoelastic phantom across six ultrasound elastography systems: A comparative study with transient elastography and magnetic resonance elastography. J. Med. Ultra. 2022 49 2 143 152 10.1007/s10396‑022‑01190‑x
    [Google Scholar]
  22. Sebag F. Lombard V.J. Berbis J. Griset V. Henry J.F. Petit P. Oliver C. Shear wave elastography: A new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J. Clin. Endocrinol. Metab. 2010 95 12 5281 5288 10.1210/jc.2010‑0766 20881263
    [Google Scholar]
  23. Bhatia K.S.S. Tong C.S.L. Cho C.C.M. Yuen E.H.Y. Lee Y.Y.P. Ahuja A.T. Shear wave elastography of thyroid nodules in routine clinical practice: Preliminary observations and utility for detecting malignancy. Eur. Radiol. 2012 22 11 2397 2406 10.1007/s00330‑012‑2495‑1 22645042
    [Google Scholar]
  24. Vlad M. Golu I. Bota S. Vlad A. Timar B. Timar R. Sporea I. Real-time shear wave elastography may predict autoimmune thyroid disease. Wien. Klin. Wochenschr. 2015 127 9-10 330 336 10.1007/s00508‑015‑0754‑2 25835593
    [Google Scholar]
  25. Maralescu F.M. Bende F. Sporea I. Popescu A. Sirli R. Schiller A. Petrica L. Miutescu B. Borlea A. Popa A. Bodea M. Bob F. Non-invasive evaluation of kidney elasticity and viscosity in a healthy cohort. Biomedicines 2022 10 11 2859 10.3390/biomedicines10112859 36359379
    [Google Scholar]
  26. Dulgheriu I.T. Solomon C. Muntean D. Balea P.R. Lenghel M. Ciurea A. Dudea S. Shear-wave elastography and viscosity plus for the assessment of peripheric muscles in healthy subjects: A pre- and post-contraction study. Diagnostics 2022 12 9 2138 10.3390/diagnostics12092138 36140536
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056335791241202115022
Loading
/content/journals/cmir/10.2174/0115734056335791241202115022
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Thyroid elastography ; Healthy subjects ; Ultrasound ; Viscosity ; Thyroid gland
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test