Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

Deep neural networks (DNNs) have made significant contributions to diagnosing pneumonia from chest X-ray imaging. However, certain aspects of diagnosis and planning can be further enhanced through the implementation of a Quantum Deep Neural Network (QDNN). Therefore, we introduced a technique that integrates neural networks with quantum algorithms named the ZFNet-quantum neural network for detecting pneumonia using 5863 X-ray scans with binary cases.

Methods

The hybrid model efficiently pre-processes complex and high-dimensional data by extracting significant features from the ZFNet model. These significant features are given to the quantum circuit algorithm and further embedded into a quantum device. The parameterized quantum circuit algorithm using qubits, superposition theorem, and entanglement phenomena generates 4 features from 4098 features extracted from images a deep transfer learning model. Moreover, to validate the outcome measures of the proposed technique, we used various PennyLane quantum devices to detect pneumonia and normal control images. By using the Adam optimizer, which exploits an adaptive learning rate that is fixed to 10−6 and six layers of a quantum circuit composed of quantum gates, the proposed model achieves an accuracy of 96.5%, corresponding to 25 epochs.

Results

The integrated ZFNet-quantum learning network outperforms the deep transfer learning network in terms of testing accuracy, as the accuracy gained by the Convolutional Neural Network (CNN) is 94%. Therefore, we use a hybrid classical-quantum model to detect pneumonia in which a variational quantum algorithm enhances the outcomes of a ZFNet transfer learning method.

Conclusion

This approach is an efficient and automated method for detecting pneumonia and could significantly enhance outcome measures related to the speed and accuracy of the network in the clinical and healthcare sectors.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056317489240808094924
2024-01-01
2025-06-24
The full text of this item is not currently available.

References

  1. Pneumonia.2019Available from: https://www.who.int/health-topics/ pneumonia#tab=tab_1(accessed on 12-7-2024)
  2. NeumanM.I. LeeE.Y. BixbyS. DipernaS. HellingerJ. MarkowitzR. ServaesS. MonuteauxM.C. ShahS.S. Variability in the interpretation of chest radiographs for the diagnosis of pneumonia in children.J. Hosp. Med.20127429429810.1002/jhm.95522009855
    [Google Scholar]
  3. WilliamsG.J. MacaskillP. KerrM. FitzgeraldD.A. IsaacsD. CodariniM. McCaskillM. PrelogK. CraigJ.C. Variability and accuracy in interpretation of consolidation on chest radiography for diagnosing pneumonia in children under 5 years of age.Pediatr. Pulmonol.201348121195120010.1002/ppul.2280623997040
    [Google Scholar]
  4. KermanyD. ZhangK. GoldbaumM. Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for Classification.Mendeley Data20182.10.17632/rscbjbr9sj.2
    [Google Scholar]
  5. LalS. RehmanS.U. ShahJ.H. MerajT. RaufH.T. DamaševičiusR. MohammedM.A. AbdulkareemK.H. Adversarial Attack and Defence through Adversarial Training and Feature Fusion for Diabetic Retinopathy Recognition.Sensors (Basel)20212111392210.3390/s2111392234200216
    [Google Scholar]
  6. RaufH. LaliM. KhanM. KadryS. AlolaiyanH. RazaqA. Time series forecasting of COVID-19 transmission in Asia Pacific countries using deep neural networks.Pers. Ubiquitous Comput.202111833456433
    [Google Scholar]
  7. DengJ. DongW. SocherR. LiL. LiK. Fei-FeiL. Imagenet: A large-scale hierarchical image database.2009 IEEE Conference on Computer Vision And Pattern Recognition20-25 June 2009, Miami, FL, USA, 2009, pp. 248-255.10.1109/CVPR.2009.5206848
    [Google Scholar]
  8. ShahwarT. ZafarJ. AlmogrenA. ZafarH. RehmanA. ShafiqM. HamamH. Automated detection of alzheimer’s via hybrid classical quantum neural networks.Electronics (Basel)202211572110.3390/electronics11050721
    [Google Scholar]
  9. Ben JabraM. KoubaaA. BenjdiraB. AmmarA. HamamH. Covid-19 diagnosis in chest X-rays using deep learning and majority voting.Appl. Sci. (Basel)2021116288410.3390/app11062884
    [Google Scholar]
  10. AlbahliS. RaufH.T. AlgosaibiA. BalasV.E. AI-driven deep CNN approach for multi-label pathology classification using chest X-Rays.PeerJ Comput. Sci.20217e49510.7717/peerj‑cs.49533977135
    [Google Scholar]
  11. AlbahliS. RaufH. ArifM. NafisM. AlgosaibiA. Identification of thoracic diseases by exploiting deep neural networks.Neural Netw.202156
    [Google Scholar]
  12. ChandraT. VermaK. Pneumonia detection on chest X-ray using machine learning paradigm.Proceedings Of 3rd International Conference On Computer Vision And Image Processing01 November 2019, Singapore, pp.21-33.10.1007/978‑981‑32‑9088‑4_3
    [Google Scholar]
  13. KuoK.M. TalleyP.C. HuangC.H. ChengL.C. Predicting hospital-acquired pneumonia among schizophrenic patients: a machine learning approach.BMC Med. Inform. Decis. Mak.20191914210.1186/s12911‑019‑0792‑130866913
    [Google Scholar]
  14. MerajT. HassanA. ZahoorS. RaufH. LaliM. AliL. Lungs nodule detection using semantic segmentation and classification with optimal features.Preprints 2019.
    [Google Scholar]
  15. RajinikanthV. KadryS. Machine-Learning-Scheme to Detect Choroidal-Neovascularization in Retinal OCT Image.2021 Seventh International Conference On Bio Signals, Images, And Instrumentation (ICBSII)25-27 March 2021, Chennai, India, 2021, pp. 1-5.
    [Google Scholar]
  16. KadryS. NamY. RaufH. RajinikanthV. LawalI. Automated Detection of Brain Abnormality using Deep-Learning-Scheme: A Study.2021 Seventh International Conference On Bio Signals, Images, And Instrumentation (ICBSII)25-27 March 2021, Chennai, India, 2021, pp. 1-5.10.1109/ICBSII51839.2021.9445122
    [Google Scholar]
  17. RajinikanthV. KadryS. TaniarD. Breast-Cancer Detection using Thermal Images with Marine-Predators-Algorithm Selected Features.2021 Seventh International Conference On Bio Signals, Images, And Instrumentation (ICBSII)25-27 March 2021, Chennai, India, 2021, pp. 1-6.
    [Google Scholar]
  18. DouarreC. SchieleinR. FrindelC. GerthS. RousseauD. Transfer learning from synthetic data applied to soil–root segmentation in X-ray tomography images.J. Imaging2018456510.3390/jimaging4050065
    [Google Scholar]
  19. ZhangY. WangG. LiM. HanS. Automated classification analysis of geological structures based on images data and deep learning model.Appl. Sci. (Basel)2018812249310.3390/app8122493
    [Google Scholar]
  20. WangY. WangC. ZhangH. Ship classification in high-resolution SAR images using deep learning of small datasets.Sensors (Basel)2018189292910.3390/s1809292930177668
    [Google Scholar]
  21. SunC. YangY. WenC. XieK. WenF. Voiceprint identification for limited dataset using the deep migration hybrid model based on transfer learning.Sensors (Basel)2018187239910.3390/s1807239930041500
    [Google Scholar]
  22. ChenZ. ZhangY. OuyangC. ZhangF. MaJ. Automated landslides detection for mountain cities using multitemporal remote sensing imagery.Sensors (Basel)201818382110.3390/s1803082129522424
    [Google Scholar]
  23. RazzakM.I. NazS. ZaibA. Deep learning for medical image processing: Overview, challenges and the future.Classification in BioApps.Cham, SwitzerlandSpringer2018pp. 323-350.10.1007/978‑3‑319‑65981‑7_12
    [Google Scholar]
  24. SharmaH. JainJ. BansalP. GuptaS. Feature Extraction and Classification of Chest X-Ray Images Using CNN to Detect Pneumonia.2020 10th International Conference on Cloud Computing, Data Science and Engineering (Confluence)29-31 January 2020, Noida, India, pp. 227-231.
    [Google Scholar]
  25. StephenO. SainM. MaduhU.J. JeongD.U. An efficient deep learning approach to pneumonia classification in healthcare.J. Healthc. Eng.201920191710.1155/2019/418094931049186
    [Google Scholar]
  26. RajpurkarP. IrvinJ. ZhuK. YangB. MehtaH. DuanT. Radiologist-level pneumonia detection on chest X-rays with deep learning.Preprint ArXiv:1711.05225, 2017.
    [Google Scholar]
  27. AbiyevR.H. Ma’aitahM.K.S. Deep convolutional neural networks for chest diseases detection.J. Healthc. Eng.2018201811110.1155/2018/416853830154989
    [Google Scholar]
  28. CohenJ.P. BertinP. FrappierV. Chester: A web delivered locally computed chest X-ray disease prediction system.2019
    [Google Scholar]
  29. RajaramanS. CandemirS. KimI. ThomaG. AntaniS. Visualization and interpretation of convolutional neural network predictions in detecting pneumonia in pediatric chest radiographs.Appl. Sci. (Basel)2018810171510.3390/app810171532457819
    [Google Scholar]
  30. To ˘gaçarM. ErgenB. CömertZ. A deep feature learning model for pneumonia detection applying a combination of mRMR feature selection and machine learning models.IRBM2019
    [Google Scholar]
  31. SaraivaA. SantosD. CostaN.J.C. SousaJ.V.M. FerreiraN.F. ValenteA. SoaresS. Models of learning to classify X-ray images for the detection of pneumonia using.Neural Netw.2019Feb 227683
    [Google Scholar]
  32. SirazitdinovI. KholiavchenkoM. MustafaevT. YixuanY. KuleevR. IbragimovB. Deep neural network ensemble for pneumonia localization from a large-scale chest x-ray database.Comput. Electr. Eng.20197838839910.1016/j.compeleceng.2019.08.004
    [Google Scholar]
  33. LakhaniP. SundaramB. Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks.Radiology2017284257458210.1148/radiol.201716232628436741
    [Google Scholar]
  34. AyanE. ÜnverH.M. Diagnosis of Pneumonia from Chest X-ray Images Using Deep Learning.Proceedings of the 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT)24-26 April 2019, Istanbul, Turkey, pp. 1-5.10.1109/EBBT.2019.8741582
    [Google Scholar]
  35. RahmanT. ChowdhuryM.E.H. KhandakarA. IslamK.R. IslamK.F. MahbubZ.B. KadirM.A. KashemS. Transfer learning with deep convolutional neural network (CNN) for pneumonia detection using chest X-ray.Appl. Sci. (Basel)2020109323310.3390/app10093233
    [Google Scholar]
  36. XuS. WuH. BieR. CXNet-m1: Anomaly detection on chest X-rays with image-based deep learning.IEEE Access201974466447710.1109/ACCESS.2018.2885997
    [Google Scholar]
  37. JaiswalA.K. TiwariP. KumarS. GuptaD. KhannaA. RodriguesJ.J.P.C. Identifying pneumonia in chest X-rays: A deep learning approach.Measurement201914551151810.1016/j.measurement.2019.05.076
    [Google Scholar]
  38. ChouhanV. SinghS.K. KhampariaA. GuptaD. TiwariP. MoreiraC. DamaševičiusR. de AlbuquerqueV.H.C. A novel transfer learning based approach for pneumonia detection in chest X-ray images.Appl. Sci. (Basel)202010255910.3390/app10020559
    [Google Scholar]
  39. LiangG. ZhengL. A transfer learning method with deep residual network for pediatric pneumonia diagnosis.Comput. Methods Programs Biomed.202018710496410.1016/j.cmpb.2019.06.02331262537
    [Google Scholar]
  40. IbrahimA.U. OzsozM. SerteS. Al-TurjmanF. YakoiP.S. Pneumonia classification using deep learning from chest X-ray images during COVID-19.Cognit. Comput.2021113
    [Google Scholar]
  41. ZubairS. An efficient method to predict pneumonia from chest x-rays using deep learning approach.Stud Health Technol Inform.202027245710.3233/SHTI20059432604701
    [Google Scholar]
  42. RazaA. A hybrid deep learning-based approach for brain tumor classification.Electronics (Basel)2022202210.3390/electronics11071146
    [Google Scholar]
  43. GuefrechiS. JabraM.B. AmmarA. KoubaaA. HamamH. Deep learning based detection of COVID-19 from chest X-ray images.Multimedia Tools Appl.20218021-23318033182010.1007/s11042‑021‑11192‑534305440
    [Google Scholar]
  44. LepchaD.C. Multimodal medical image fusion based on pixel significance using anisotropic diffusion and cross bilateral filter.Human-centric Comput. Inform. Sci.2022121510.22967/HCIS.2022.12.015
    [Google Scholar]
  45. ZhaoC. XiangS. WangY. CaiZ. ShenJ. ZhouS. ZhaoD. SuW. GuoS. LiS. Context-aware network fusing transformer and V-Net for semi-supervised segmentation of 3D left atrium.Expert Syst. Appl.202321411910510.1016/j.eswa.2022.119105
    [Google Scholar]
  46. XiangS. LiN. WangY. ZhouS. WeiJ. LiS. Automatic delineation of the 3D left atrium from LGE-MRI: Actor-critic based detection and semi-supervised segmentation.IEEE J. Biomed. Health Inform.20242863545355610.1109/JBHI.2024.337312738442054
    [Google Scholar]
  47. ManickamA. JiangJ. ZhouY. SagarA. SoundrapandiyanR. Dinesh Jackson SamuelR. Automated pneumonia detection on chest X-ray images: A deep learning approach with different optimizers and transfer learning architectures.Measurement202118410995310.1016/j.measurement.2021.109953
    [Google Scholar]
  48. ZengY. WangH. HeJ. HuangQ. ChangS. A multi-classification hybrid quantum neural network using an all-qubit multi-observable measurement strategy.Entropy (Basel)202224339410.3390/e2403039435327905
    [Google Scholar]
  49. PiatS. UsherN. SeveriniS. HerbsterM. MansiT. MountneyP. Image classification with quantum pre-training and auto-encoders.Int. J. Quant. Inf.2018168184000910.1142/S0219749918400099
    [Google Scholar]
  50. NguyenN. ChenK.C. Bayesian quantum neural networks.IEEE Access202210541105412210.1109/ACCESS.2022.3168675
    [Google Scholar]
  51. MariA. BromleyT.R. IzaacJ. SchuldM. KilloranN. Transfer learning in hybrid classical-quantum neural networks.Quantum2020434010.22331/q‑2020‑10‑09‑340
    [Google Scholar]
  52. MirA. YasinU. Naeem KhanS. AtharA. JabeenR. AslamS. Diabetic retinopathy detection using classical-quantum transfer learning approach and probability model.Comput. Mater. Continua20227123733374610.32604/cmc.2022.022524
    [Google Scholar]
  53. KerenidisI. LandmanJ. PrakashA. Quantum algorithms for deep convolutional neural networks.2019
    [Google Scholar]
  54. AlsharabiN. ShahwarT. RehmanA.U. AlharbiY. Implementing magnetic resonance imaging brain disorder classification via alexnet–quantum learning.Mathematics202311237610.3390/math11020376
    [Google Scholar]
  55. TyagiK. Detecting Pneumonia using Vision Transformer and comparing with other techniques.5th International Conference on Electronics, Communication and Aerospace Technology (ICECA)02-04 December 2021, Coimbatore, India, 2021, pp. 12-16.10.1109/ICECA52323.2021.9676146
    [Google Scholar]
  56. YueY. MedMamba: Vision mamba for medical image classification.2024
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056317489240808094924
Loading
/content/journals/cmir/10.2174/0115734056317489240808094924
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test