Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Objective

To verify the multiphase ratio of Computer Tomography-value between the renal cortex and renal medulla, which can be used to concisely evaluate renal function in kidney recipients.

Methods

Fifty-eight kidney recipients were retrospectively enrolled and divided into the Normal group (eGFR≥90 mL/min/1.73m2) and Abnormal group (eGFR<90 mL/min/1.73m2) according to Chronicle Kidney Disease Epidemiology Collaboration (eGFR(CKD-EPI)) and the Modular of Diet in Renal Disease (eGFR(MDRD)) formulas respectively. The multiphasic ratios between the renal cortex and medulla in the arterial phase and venous phase were noted as A(Ratio) and V(Ratio), and the difference between those two was recorded as D(Ratio). Correlation/regression analysis, student -test, and ROC curves analysis were used to test the ability of multiphasic ratios to assess renal function.

Results

Both A(Ratio) and V(Ratio) were moderately correlated with eGFR(CKD-EPI) (Y =20.41*X + 28.20, =0.40 (95%Cl, 0.13-0.58), <0.01; Y =-16.57*X + 109.8, =-0.29 (95%Cl, -0.51--0.04), =0.03) and eGFR(MDRD) (Y =23.72*X + 23.52, =0.38 (95%Cl, 0.13-0.58), <0.01; Y =-19.88*X + 119.5, =-0.30 (95%Cl, -0.52--0.05), =0.02). However, D(Ratio) was strongly positive correlated with eGFR(CKD-EPI) (Y = 30.95*X + 60.71, =0.61 (95%Cl,0.42-0.75), <0.001) and eGFR(MDRD) (Y = 36.47*X + 61.01, =0.62 (95%Cl, 0.44-0.76), <0.001), respectively, and both regression lines were not significant different (slope: =0.496, intercept: =0.378). The differences in D(Ratio) between the two groups were significant (all <0.05). The ROC curve analysis provided the cutoff values of D(Ratio) for assessing eGFR (AUC:0.863 and AUC:0.822, all <0.001).

Conclusion

The D(Ratio) can be used to assess renal function for kidney recipients.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056315692240812075033
2024-01-01
2025-06-28
The full text of this item is not currently available.

References

  1. FergusonT.W. TangriN. RigattoC. KomendaP. Cost-effective treatment modalities for reducing morbidity associated with chronic kidney disease.Expert Rev. Pharmacoecon. Outcomes Res.201515224325210.1586/14737167.2015.101206925661187
    [Google Scholar]
  2. FishbaneS. HazzanA.D. HalinskiC. MathewA.T. Challenges and opportunities in late-stage chronic kidney disease.Clin. Kidney J.201581546010.1093/ckj/sfu12825713711
    [Google Scholar]
  3. LuyckxV.A. CherneyD.Z.I. BelloA.K. Preventing CKD in developed countries.Kidney Int. Rep.20205326327710.1016/j.ekir.2019.12.00332154448
    [Google Scholar]
  4. KuppachiS. NormanS.P. LentineK.L. AxelrodD.A. Using race to estimate glomerular filtration and its impact in kidney transplantation.Clin. Transplant.20213511413610.1111/ctr.1413633232529
    [Google Scholar]
  5. ChoiD.K. ChoiS.M. ParkB.H. JeongB.C. SeoS.I. JeonS.S. LeeH.M. ChoiH.Y. JeonH.G. Measurement of renal function in a kidney donor: a comparison of creatinine-based and volume-based GFRs.Eur. Radiol.201525113143315010.1007/s00330‑015‑3741‑025952999
    [Google Scholar]
  6. MorenoC.C. MittalP.K. GhongeN.P. BhargavaP. HellerM.T. Imaging complications of renal transplantation.Radiol. Clin. North Am.201654223524910.1016/j.rcl.2015.09.00726896222
    [Google Scholar]
  7. SmithD. ChudgarA. DalyB. CooperM. Evaluation of potential renal transplant recipients with computed tomography angiography.Arch. Surg.2012147121114112210.1001/archsurg.2012.146623248013
    [Google Scholar]
  8. SarsengaliyevT. ChuvakovaE. TsoyB. ZhangalovaA. GaipovA. Computed tomography in the preoperative and postoperative evaluation of kidney transplant patients.Exp. Clin. Transplant.201513889026640922
    [Google Scholar]
  9. CorbettM. DuarteA. LlewellynA. AltunkayaJ. HardenM. HarrisM. WalkerS. PalmerS. DiasS. SoaresM. Point-of-care creatinine tests to assess kidney function for outpatients requiring contrast-enhanced CT imaging: systematic reviews and economic evaluation.Health Technol. Assess.20202439124810.3310/hta2439032840478
    [Google Scholar]
  10. FananapazirG. TroppmannC. CorwinM.T. NikpourA.M. NaderiS. LambaR. Incidences of acute kidney injury, dialysis, and graft loss following intravenous administration of low-osmolality iodinated contrast in patients with kidney transplants.Abdom. Radiol. (N.Y.)201641112182218610.1007/s00261‑016‑0827‑327377897
    [Google Scholar]
  11. YuanX. TangW. ShiW. YuL. ZhangJ. YuanQ. YouS. WuN. AoG. MaT. Determination of glomerular filtration rate (GFR) from fractional renal accumulation of iodinated contrast material: A convenient and rapid single-kidney CT-GFR technique.Eur. Radiol.20182872763277110.1007/s00330‑017‑5289‑729426992
    [Google Scholar]
  12. JeongS. ParkS.B. ChangI.H. ShinJ. ChiB.H. ParkH.J. LeeE.S. Estimation of renal function using kidney dynamic contrast material-enhanced CT perfusion: Accuracy and feasibility.Abdom. Radiol. (N.Y.)20214652045205110.1007/s00261‑020‑02826‑733090257
    [Google Scholar]
  13. YouS. MaX. ZhangC. LiQ. ShiW. ZhangJ. YuanX. Determination of single-kidney glomerular filtration rate (GFR) with CT urography versus renal dynamic imaging Gates method.Eur. Radiol.20182831077108410.1007/s00330‑017‑5061‑z28971295
    [Google Scholar]
  14. YuanX. ZhangJ. QuanC. TianY. LiH. AoG. A simplified whole-organ ct Perfusion technique with biphasic acquisition: Preliminary investigation of accuracy and protocol feasibility in kidneys.Radiology2016279125426110.1148/radiol.201514275726536310
    [Google Scholar]
  15. KwonS.H. SaadA. HerrmannS.M. TextorS.C. LermanL.O. Determination of single-kidney glomerular filtration rate in human subjects by using CT.Radiology2015276249049810.1148/radiol.201514189225848903
    [Google Scholar]
  16. LalH. SinghA. PrasadR. YadavP. AkhtarJ. BaraiS. MishraP. BhadauriaD. KaulA. PrasadN. VermaP. Determination of split renal function in voluntary renal donors by multidetector computed tomography and nuclear renography: How well do they correlate?SA J. Radiol.2021251200910.4102/sajr.v25i1.200933824742
    [Google Scholar]
  17. ValentinJ. Managing patient dose in multi-detector computed tomography (MDCT). ICRP Publication 102.Ann. ICRP200737117918069128
    [Google Scholar]
  18. LeveyA.S. StevensL.A. SchmidC.H. ZhangY.L. CastroA.F.III FeldmanH.I. KusekJ.W. EggersP. Van LenteF. GreeneT. CoreshJ. A new equation to estimate glomerular filtration rate.Ann. Intern. Med.2009150960461210.7326/0003‑4819‑150‑9‑200905050‑0000619414839
    [Google Scholar]
  19. SchrotenN.F. DammanK. ValenteM.A.E. SmildeT.D. van VeldhuisenD.J. NavisG. GaillardC.A. VoorsA.A. HillegeH.L. Long-term changes in renal function and perfusion in heart failure patients with reduced ejection fraction.Clin. Res. Cardiol.20161051101610.1007/s00392‑015‑0881‑926123828
    [Google Scholar]
  20. HacksteinN. WiegandC. RauW.S. LangheinrichA.C. Glomerular filtration rate measured by using triphasic helical CT with a two-point Patlak plot technique.Radiology2004230122122610.1148/radiol.230102126614645882
    [Google Scholar]
  21. WangT. XuY. LiuW. ShaoP. LvQ. YangG. TangL. Measurement of glomerular filtration rate using multiphasic computed tomography in patients with unilateral renal tumors: a feasibility study.Front. Physiol.201910120910.3389/fphys.2019.0120931607949
    [Google Scholar]
  22. ShiW. LiangX. WuN. ZhangH. YuanX. TanY. Assessment of split renal function using a combination of contrast-enhanced CT and serum creatinine values for glomerular filtration rate estimationAJR Am. J. Roentgenol.2020215114214710.2214/AJR.19.2212532255686
    [Google Scholar]
  23. HouboisC. HanederS. MerktM. MorelliJ.N. SchmidtM. HellmichM. MuellerR.U. WahbaR. MaintzD. PueskenM. Can computed tomography volumetry of the renal cortex replace MAG3-scintigraphy in all patients for determining split renal function?Eur. J. Radiol.201810310511110.1016/j.ejrad.2018.04.01629803374
    [Google Scholar]
  24. GhaithN. MalaebB. ItaniR. AlnafeaM. Al FarajA. Correlation of kidney size on computed tomography with Gfr, creatinine and HbA1C for an accurate diagnosis of patients with diabetes and/or chronic kidney disease.Diagnostics (Basel)202111578910.3390/diagnostics1105078933925666
    [Google Scholar]
  25. KimS.H. Effects of changes in analytic variables and contrast material on measurement of computed tomography glomerular filtration rates in healthy candidates.J. Comput. Assist. Tomogr.202044221722210.1097/RCT.000000000000097931996652
    [Google Scholar]
  26. DelayA. MoranneO. FafinC. MariatC. AlamartineE. DelanayeP. MaillardN. Relationship between decline in estimated or measured glomerular filtration rate and 16-year postrenal transplant outcome.Clin. Kidney J.20211461665167210.1093/ckj/sfaa20334084462
    [Google Scholar]
  27. von StillfriedS. ApitzschJ.C. EhlingJ. PenzkoferT. MahnkenA.H. KnüchelR. FloegeJ. BoorP. Contrast-enhanced CT imaging in patients with chronic kidney disease.Angiogenesis201619452553510.1007/s10456‑016‑9524‑727582011
    [Google Scholar]
  28. HouboisC. HanederS. MerktM. HolzJ.A. MorelliJ. KielA. DoernerJ. MaintzD. PueskenM. Semiautomated renal cortex volumetry in multislice computed tomography: Effect of slice thickness and iterative reconstruction algorithms.J. Comput. Assist. Tomogr.202044223624110.1097/RCT.000000000000098832195802
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056315692240812075033
Loading
/content/journals/cmir/10.2174/0115734056315692240812075033
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test