Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Objective

The aim of this study was to investigate the feasibility of muscle CT radiomics in identifying gout.

Materials and Methods

A total of 30 gout patients and 20 non-gout cases with CT examinations of ankles were analyzed by using the methods of CT radiomics. CT radiomics features of the soleus muscle were extracted using the software of a 3D slicer, and then gout cases and non-gout cases were compared. The radiomics features that were significantly different between the two groups were then processed with machine learning methods. Receiver operating characteristic curve analysis was used to evaluate the diagnostic performance.

Results

Five CT radiomics features were significantly different between gout cases and non-gout cases (P < 0.05). In the logic regression, the AUC, sensitivity, specificity, and accuracy were 0.738, 77% (46/60), 70% (28/40), and 74% (74/100), respectively. In the Random forest, Xgboost, and support vector machine analysis, the accuracy was 0.901, 0.833, and 0.875, respectively.

Conclusion

From this study, it can be concluded that muscle CT radiomics is feasible in identifying gout.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056313937240816070503
2024-01-01
2025-04-09
The full text of this item is not currently available.

References

  1. SmithE. HoyD. CrossM. MerrimanT.R. VosT. BuchbinderR. WoolfA. MarchL. The global burden of gout: Estimates from the global burden of disease 2010 study.Ann. Rheum. Dis.20147381470147610.1136/annrheumdis‑2013‑20464724590182
    [Google Scholar]
  2. WertheimerA. MorlockR. BeckerM.A. A revised estimate of the burden of illness of gout.Curr. Ther. Res. Clin. Exp.2013751410.1016/j.curtheres.2013.04.00324465034
    [Google Scholar]
  3. PatelA.V. GaffoA.L. Managing gout in women: Current perspectives.J. Inflamm. Res.2022151591159810.2147/JIR.S28475935264868
    [Google Scholar]
  4. SinghJ.A. GaffoA. Gout epidemiology and comorbidities.Semin. Arthritis Rheum.2020503S11S1610.1016/j.semarthrit.2020.04.00832620196
    [Google Scholar]
  5. RichetteP. DohertyM. PascualE. BarskovaV. BecceF. CastanedaJ. CoyfishM. GuilloS. JansenT. JanssensH. LiotéF. MallenC.D. NukiG. Perez-RuizF. PimentaoJ. PunziL. PywellA. SoA.K. TauscheA.K. UhligT. ZavadaJ. ZhangW. TubachF. BardinT. 2018 updated european league against rheumatism evidence-based recommendations for the diagnosis of gout.Ann. Rheum. Dis.2020791313810.1136/annrheumdis‑2019‑21531531167758
    [Google Scholar]
  6. LeiT. GuoJ. WangP. ZhangZ. NiuS. ZhangQ. QingY. Establishment and validation of predictive model of tophus in gout patients.J. Clin. Med.2023125175510.3390/jcm1205175536902542
    [Google Scholar]
  7. LuX. LiX. ZhaoY. ZhengZ. GuanS. ChanP. Contemporary epidemiology of gout and hyperuricemia in community elderly in B eijing.Int. J. Rheum. Dis.201417440040710.1111/1756‑185X.1215624118986
    [Google Scholar]
  8. ChoiH.K. Al-ArfajA.M. EftekhariA. MunkP.L. ShojaniaK. ReidG. NicolaouS. Dual energy computed tomography in tophaceous gout.Ann. Rheum. Dis.200968101609161210.1136/ard.2008.09971319066180
    [Google Scholar]
  9. NeogiT. JansenT.L.T.A. DalbethN. FransenJ. SchumacherH.R. BerendsenD. BrownM. ChoiH. EdwardsN.L. JanssensH.J.E.M. LiotéF. NadenR.P. NukiG. OgdieA. Perez-RuizF. SaagK. SinghJ.A. SundyJ.S. TauscheA.K. Vaquez-MelladoJ. YarowsS.A. TaylorW.J. Gout classification criteria: An american college of rheumatology/european league against rheumatism collaborative initiative.Ann. Rheum. Dis.201574101789179810.1136/annrheumdis‑2015‑20823726359487
    [Google Scholar]
  10. GamalaM. JacobsJ.W.G. van LaarJ.M. The diagnostic performance of dual energy CT for diagnosing gout: A systematic literature review and meta-analysis.Rheumatology201958122117212110.1093/rheumatology/kez18031089688
    [Google Scholar]
  11. XiangC. ZhangH. WuG. A novel parameter derived from post-processing procedure of dual energy CT for identification of gout.Sci. Rep.20211112154810.1038/s41598‑021‑01100‑034732820
    [Google Scholar]
  12. NicolaouS. Yong-HingC.J. Galea-SolerS. HouD.J. LouisL. MunkP. Dual-energy CT as a potential new diagnostic tool in the management of gout in the acute setting.AJR Am. J. Roentgenol.201019441072107810.2214/AJR.09.242820308513
    [Google Scholar]
  13. LeeS.K. JungJ.Y. JeeW.H. LeeJ.J. ParkS.H. Combining non-contrast and dual-energy CT improves diagnosis of early gout.Eur. Radiol.20192931267127510.1007/s00330‑018‑5716‑430225600
    [Google Scholar]
  14. HassaniC. SaremiF. VargheseB.A. DuddalwarV. Myocardial radiomics in cardiac MRI.AJR Am. J. Roentgenol.2020214353654510.2214/AJR.19.2198631799865
    [Google Scholar]
  15. HuangY. LiangC. HeL. TianJ. LiangC. ChenX. MaZ. LiuZ. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer.J. Clin. Oncol.201634182157216410.1200/JCO.2015.65.912827138577
    [Google Scholar]
  16. LuoX. PiaoS. LiH. LiY. XiaW. BaoY. LiuX. GengD. WuH. YangL. Multi-lesion radiomics model for discrimination of relapsing-remitting multiple sclerosis and neuropsychiatric systemic lupus erythematosus.Eur. Radiol.20223285700571010.1007/s00330‑022‑08653‑235243524
    [Google Scholar]
  17. WuG. WoodruffH.C. ShenJ. RefaeeT. SanduleanuS. IbrahimA. LeijenaarR.T.H. WangR. XiongJ. BianJ. WuJ. LambinP. Diagnosis of invasive lung adenocarcinoma based on chest CT radiomic features of part-solid pulmonary nodules: A multicenter study.Radiology2020297245145810.1148/radiol.202019243132840472
    [Google Scholar]
  18. ZhangP. FengZ. CaiW. YouH. FanC. LvW. MinX. WangL. T2-weighted image-based radiomics signature for discriminating between seminomas and nonseminoma.Front. Oncol.20199133010.3389/fonc.2019.0133031850216
    [Google Scholar]
  19. XiaT. ZhouZ. MengX. ZhaJ. YuQ. WangW. SongY. WangY. TangT. XuJ. ZhangT. LongX. LiangY. XiaoW. JuS. Predicting microvascular invasion in hepatocellular carcinoma using CT-based radiomics model.Radiology20233074e22272910.1148/radiol.22272937097141
    [Google Scholar]
  20. SanghaviP.S. JankhariaB.G. Applications of dual energy CT in clinical practice: A pictorial essay.Indian J. Radiol. Imaging201929328929810.4103/ijri.IJRI_241_1931741598
    [Google Scholar]
  21. TauscheA.K. AringerM. Gicht.Z. Rheumatol.201675988589810.1007/s00393‑016‑0206‑z27730304
    [Google Scholar]
  22. MiwaS. OtsukaT. Practical use of imaging technique for management of bone and soft tissue tumors.J. Orthop. Sci.201722339140010.1016/j.jos.2017.01.00628161235
    [Google Scholar]
  23. RogersW. Thulasi SeethaS. RefaeeT.A.G. LieverseR.I.Y. GranzierR.W.Y. IbrahimA. KeekS.A. SanduleanuS. PrimakovS.P. BeuqueM.P.L. MarcusD. van der WielA.M.A. ZerkaF. OberijeC.J.G. van TimmerenJ.E. WoodruffH.C. LambinP. Radiomics: From qualitative to quantitative imaging.Br. J. Radiol.20209311082019094810.1259/bjr.2019094832101448
    [Google Scholar]
  24. BhandariA. IbrahimM. SharmaC. LiongR. GustafsonS. PriorM. CT-based radiomics for differentiating renal tumours: A systematic review.Abdom. Radiol20214652052206310.1007/s00261‑020‑02832‑933136182
    [Google Scholar]
  25. ParekhV.S. JacobsM.A. Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging.Breast Cancer Res. Treat.20201802407421http://doi.org/DOI10.1007/s10549‑020‑05533‑532020435
    [Google Scholar]
  26. ZhuY. PandyaB.J. ChoiH.K. Prevalence of gout and hyperuricemia in the US general population: The national health and nutrition examination survey 2007-2008.Arthritis Rheum.201163103136314110.1002/art.3052021800283
    [Google Scholar]
  27. ChoiH.K. MountD.B. ReginatoA.M. American college of physicians.American physiological society. Pathogenesis of gout.Ann. Intern. Med.2005143749951610.7326/0003‑4819‑143‑7‑200510040‑0000916204163
    [Google Scholar]
  28. SunY. MaL. ZhouY. ChenH. DingY. ZhouJ. WeiL. ZouH. JiangL. Features of urate deposition in patients with gouty arthritis of the foot using dual‐energy computed tomography.Int. J. Rheum. Dis.201518556056710.1111/1756‑185X.1219424238356
    [Google Scholar]
  29. DalbethN. CollisJ. GregoryK. ClarkB. RobinsonE. McQueenF.M. Tophaceous joint disease strongly predicts hand function in patients with gout.Rheumatology200746121804180710.1093/rheumatology/kem24617982165
    [Google Scholar]
  30. XuH. QinH. HuaY. DalbethN. Contributions of joint damage-related events to gout pathogenesis: New insights from laboratory research.Ann. Rheum. Dis.202382121511151510.1136/ard‑2023‑22467937586760
    [Google Scholar]
  31. ChhanaA. DalbethN. Structural joint damage in gout.Rheum. Dis. Clin. North Am.201440229130910.1016/j.rdc.2014.01.00624703348
    [Google Scholar]
  32. LiQ. LiX. WangJ. LiuH. KwongJ.S.W. ChenH. LiL. ChungS.C. ShahA. ChenY. AnZ. SunX. HemingwayH. TianH. LiS. Diagnosis and treatment for hyperuricemia and gout: A systematic review of clinical practice guidelines and consensus statements.BMJ Open201998e02667710.1136/bmjopen‑2018‑02667731446403
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056313937240816070503
Loading
/content/journals/cmir/10.2174/0115734056313937240816070503
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Ankle; CT density; Dual-energy CT; Gout; Muscle features; Radiomics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test