Skip to content
2000
image of Muscle CT Radiomics is Feasible in the Identification of Gout

Abstract

Objective:

The aim of this study was to investigate the feasibility of muscle CT radiomics in identifying gout.

Materials and Methods:

A total of 30 gout patients and 20 non-gout cases with CT examinations of ankles were analyzed by using the methods of CT radiomics. CT radiomics features of the soleus muscle were extracted using the software of a 3D slicer, and then gout cases and non-gout cases were compared. The radiomics features that were significantly different between the two groups were then processed with machine learning methods. Receiver operating characteristic curve analysis was used to evaluate the diagnostic performance.

Results:

Five CT radiomics features were significantly different between gout cases and non-gout cases (P < 0.05). In the logic regression, the AUC, sensitivity, specificity, and accuracy were 0.738, 77% (46/60), 70% (28/40), and 74% (74/100), respectively. In the Random forest, Xgboost, and support vector machine analysis, the accuracy was 0.901, 0.833, and 0.875, respectively.

Conclusion:

From this study, it can be concluded that muscle CT radiomics is feasible in identifying gout.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056313937240816070503
2024-09-02
2025-01-18
Loading full text...

Full text loading...

/deliver/fulltext/cmir/10.2174/0115734056313937240816070503/e15734056313937.html?itemId=/content/journals/cmir/10.2174/0115734056313937240816070503&mimeType=html&fmt=ahah

References

  1. Smith E. Hoy D. Cross M. Merriman T.R. Vos T. Buchbinder R. Woolf A. March L. The global burden of gout: Estimates from the global burden of disease 2010 study. Ann. Rheum. Dis. 2014 73 8 1470 1476 10.1136/annrheumdis‑2013‑204647 24590182
    [Google Scholar]
  2. Wertheimer A. Morlock R. Becker M.A. A revised estimate of the burden of illness of gout. Curr. Ther. Res. Clin. Exp. 2013 75 1 4 10.1016/j.curtheres.2013.04.003 24465034
    [Google Scholar]
  3. Patel A.V. Gaffo A.L. Managing gout in women: Current perspectives. J. Inflamm. Res. 2022 15 1591 1598 10.2147/JIR.S284759 35264868
    [Google Scholar]
  4. Singh J.A. Gaffo A. Gout epidemiology and comorbidities. Semin. Arthritis Rheum. 2020 50 3 S11 S16 10.1016/j.semarthrit.2020.04.008 32620196
    [Google Scholar]
  5. Richette P. Doherty M. Pascual E. Barskova V. Becce F. Castaneda J. Coyfish M. Guillo S. Jansen T. Janssens H. Lioté F. Mallen C.D. Nuki G. Perez-Ruiz F. Pimentao J. Punzi L. Pywell A. So A.K. Tausche A.K. Uhlig T. Zavada J. Zhang W. Tubach F. Bardin T. 2018 updated european league against rheumatism evidence-based recommendations for the diagnosis of gout. Ann. Rheum. Dis. 2020 79 1 31 38 10.1136/annrheumdis‑2019‑215315 31167758
    [Google Scholar]
  6. Lei T. Guo J. Wang P. Zhang Z. Niu S. Zhang Q. Qing Y. Establishment and validation of predictive model of tophus in gout patients. J. Clin. Med. 2023 12 5 1755 10.3390/jcm12051755 36902542
    [Google Scholar]
  7. Lu X. Li X. Zhao Y. Zheng Z. Guan S. Chan P. Contemporary epidemiology of gout and hyperuricemia in community elderly in B eijing. Int. J. Rheum. Dis. 2014 17 4 400 407 10.1111/1756‑185X.12156 24118986
    [Google Scholar]
  8. Choi H.K. Al-Arfaj A.M. Eftekhari A. Munk P.L. Shojania K. Reid G. Nicolaou S. Dual energy computed tomography in tophaceous gout. Ann. Rheum. Dis. 2009 68 10 1609 1612 10.1136/ard.2008.099713 19066180
    [Google Scholar]
  9. Neogi T. Jansen T.L.T.A. Dalbeth N. Fransen J. Schumacher H.R. Berendsen D. Brown M. Choi H. Edwards N.L. Janssens H.J.E.M. Lioté F. Naden R.P. Nuki G. Ogdie A. Perez-Ruiz F. Saag K. Singh J.A. Sundy J.S. Tausche A.K. Vaquez-Mellado J. Yarows S.A. Taylor W.J. Gout classification criteria: An american college of rheumatology/european league against rheumatism collaborative initiative. Ann. Rheum. Dis. 2015 74 10 1789 1798 10.1136/annrheumdis‑2015‑208237 26359487
    [Google Scholar]
  10. Gamala M. Jacobs J.W.G. van Laar J.M. The diagnostic performance of dual energy CT for diagnosing gout: A systematic literature review and meta-analysis. Rheumatology 2019 58 12 2117 2121 10.1093/rheumatology/kez180 31089688
    [Google Scholar]
  11. Xiang C. Zhang H. Wu G. A novel parameter derived from post-processing procedure of dual energy CT for identification of gout. Sci. Rep. 2021 11 1 21548 10.1038/s41598‑021‑01100‑0 34732820
    [Google Scholar]
  12. Nicolaou S. Yong-Hing C.J. Galea-Soler S. Hou D.J. Louis L. Munk P. Dual-energy CT as a potential new diagnostic tool in the management of gout in the acute setting. AJR Am. J. Roentgenol. 2010 194 4 1072 1078 10.2214/AJR.09.2428 20308513
    [Google Scholar]
  13. Lee S.K. Jung J.Y. Jee W.H. Lee J.J. Park S.H. Combining non-contrast and dual-energy CT improves diagnosis of early gout. Eur. Radiol. 2019 29 3 1267 1275 10.1007/s00330‑018‑5716‑4 30225600
    [Google Scholar]
  14. Hassani C. Saremi F. Varghese B.A. Duddalwar V. Myocardial radiomics in cardiac MRI. AJR Am. J. Roentgenol. 2020 214 3 536 545 10.2214/AJR.19.21986 31799865
    [Google Scholar]
  15. Huang Y. Liang C. He L. Tian J. Liang C. Chen X. Ma Z. Liu Z. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J. Clin. Oncol. 2016 34 18 2157 2164 10.1200/JCO.2015.65.9128 27138577
    [Google Scholar]
  16. Luo X. Piao S. Li H. Li Y. Xia W. Bao Y. Liu X. Geng D. Wu H. Yang L. Multi-lesion radiomics model for discrimination of relapsing-remitting multiple sclerosis and neuropsychiatric systemic lupus erythematosus. Eur. Radiol. 2022 32 8 5700 5710 10.1007/s00330‑022‑08653‑2 35243524
    [Google Scholar]
  17. Wu G. Woodruff H.C. Shen J. Refaee T. Sanduleanu S. Ibrahim A. Leijenaar R.T.H. Wang R. Xiong J. Bian J. Wu J. Lambin P. Diagnosis of invasive lung adenocarcinoma based on chest CT radiomic features of part-solid pulmonary nodules: A multicenter study. Radiology 2020 297 2 451 458 10.1148/radiol.2020192431 32840472
    [Google Scholar]
  18. Zhang P. Feng Z. Cai W. You H. Fan C. Lv W. Min X. Wang L. T2-weighted image-based radiomics signature for discriminating between seminomas and nonseminoma. Front. Oncol. 2019 9 1330 10.3389/fonc.2019.01330 31850216
    [Google Scholar]
  19. Xia T. Zhou Z. Meng X. Zha J. Yu Q. Wang W. Song Y. Wang Y. Tang T. Xu J. Zhang T. Long X. Liang Y. Xiao W. Ju S. Predicting microvascular invasion in hepatocellular carcinoma using CT-based radiomics model. Radiology 2023 307 4 e222729 10.1148/radiol.222729 37097141
    [Google Scholar]
  20. Sanghavi P.S. Jankharia B.G. Applications of dual energy CT in clinical practice: A pictorial essay. Indian J. Radiol. Imaging 2019 29 3 289 298 10.4103/ijri.IJRI_241_19 31741598
    [Google Scholar]
  21. Tausche A.K. Aringer M. Gicht. Z. Rheumatol. 2016 75 9 885 898 10.1007/s00393‑016‑0206‑z 27730304
    [Google Scholar]
  22. Miwa S. Otsuka T. Practical use of imaging technique for management of bone and soft tissue tumors. J. Orthop. Sci. 2017 22 3 391 400 10.1016/j.jos.2017.01.006 28161235
    [Google Scholar]
  23. Rogers W. Thulasi Seetha S. Refaee T.A.G. Lieverse R.I.Y. Granzier R.W.Y. Ibrahim A. Keek S.A. Sanduleanu S. Primakov S.P. Beuque M.P.L. Marcus D. van der Wiel A.M.A. Zerka F. Oberije C.J.G. van Timmeren J.E. Woodruff H.C. Lambin P. Radiomics: From qualitative to quantitative imaging. Br. J. Radiol. 2020 93 1108 20190948 10.1259/bjr.20190948 32101448
    [Google Scholar]
  24. Bhandari A. Ibrahim M. Sharma C. Liong R. Gustafson S. Prior M. CT-based radiomics for differentiating renal tumours: A systematic review. Abdom. Radiol 2021 46 5 2052 2063 10.1007/s00261‑020‑02832‑9 33136182
    [Google Scholar]
  25. Parekh V.S. Jacobs M.A. Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging. Breast Cancer Res. Treat. 2020 180 2 407 421 http://doi.org/DOI 10.1007/s10549‑020‑05533‑5 32020435
    [Google Scholar]
  26. Zhu Y. Pandya B.J. Choi H.K. Prevalence of gout and hyperuricemia in the US general population: The national health and nutrition examination survey 2007-2008. Arthritis Rheum. 2011 63 10 3136 3141 10.1002/art.30520 21800283
    [Google Scholar]
  27. Choi H.K. Mount D.B. Reginato A.M. American college of physicians.American physiological society. Pathogenesis of gout. Ann. Intern. Med. 2005 143 7 499 516 10.7326/0003‑4819‑143‑7‑200510040‑00009 16204163
    [Google Scholar]
  28. Sun Y. Ma L. Zhou Y. Chen H. Ding Y. Zhou J. Wei L. Zou H. Jiang L. Features of urate deposition in patients with gouty arthritis of the foot using dual‐energy computed tomography. Int. J. Rheum. Dis. 2015 18 5 560 567 10.1111/1756‑185X.12194 24238356
    [Google Scholar]
  29. Dalbeth N. Collis J. Gregory K. Clark B. Robinson E. McQueen F.M. Tophaceous joint disease strongly predicts hand function in patients with gout. Rheumatology 2007 46 12 1804 1807 10.1093/rheumatology/kem246 17982165
    [Google Scholar]
  30. Xu H. Qin H. Hua Y. Dalbeth N. Contributions of joint damage-related events to gout pathogenesis: New insights from laboratory research. Ann. Rheum. Dis. 2023 82 12 1511 1515 10.1136/ard‑2023‑224679 37586760
    [Google Scholar]
  31. Chhana A. Dalbeth N. Structural joint damage in gout. Rheum. Dis. Clin. North Am. 2014 40 2 291 309 10.1016/j.rdc.2014.01.006 24703348
    [Google Scholar]
  32. Li Q. Li X. Wang J. Liu H. Kwong J.S.W. Chen H. Li L. Chung S.C. Shah A. Chen Y. An Z. Sun X. Hemingway H. Tian H. Li S. Diagnosis and treatment for hyperuricemia and gout: A systematic review of clinical practice guidelines and consensus statements. BMJ Open 2019 9 8 e026677 10.1136/bmjopen‑2018‑026677 31446403
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056313937240816070503
Loading
/content/journals/cmir/10.2174/0115734056313937240816070503
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Ankle ; Gout ; Radiomics ; CT density ; Muscle features ; Dual-energy CT
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test