Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Objective

This study aimed to establish a multimodal deep-learning network model to enhance the diagnosis of benign and malignant pulmonary ground glass nodules (GGNs).

Methods

Retrospective data on pulmonary GGNs were collected from multiple centers across China, including North, Northeast, Northwest, South, and Southwest China. The data were divided into a training set and a validation set in an 8:2 ratio. In addition, a GGN dataset was also obtained from our hospital database and used as the test set. All patients underwent chest computed tomography (CT), and the final diagnosis of the nodules was based on postoperative pathological reports. The Residual Network (ResNet) was used to extract imaging data, the Word2Vec method for semantic information extraction, and the Self Attention method for combining imaging features and patient data to construct a multimodal classification model. Then, the diagnostic efficiency of the proposed multimodal model was compared with that of existing ResNet and VGG models and radiologists.

Results

The multicenter dataset comprised 1020 GGNs, including 265 benign and 755 malignant nodules, and the test dataset comprised 204 GGNs, with 67 benign and 137 malignant nodules. In the validation set, the proposed multimodal model achieved an accuracy of 90.2%, a sensitivity of 96.6%, and a specificity of 75.0%, which surpassed that of the VGG (73.1%, 76.7%, and 66.5%) and ResNet (78.0%, 83.3%, and 65.8%) models in diagnosing benign and malignant nodules. In the test set, the multimodal model accurately diagnosed 125 (91.18%) malignant nodules, outperforming radiologists (80.37% accuracy). Moreover, the multimodal model correctly identified 54 (accuracy, 80.70%) benign nodules, compared to radiologists' accuracy of 85.47%. The consistency test comparing radiologists' diagnostic results with the multimodal model's results in relation to postoperative pathology showed strong agreement, with the multimodal model demonstrating closer alignment with gold standard pathological findings (Kappa=0.720, P<0.01).

Conclusion

The multimodal deep learning network model exhibited promising diagnostic effectiveness in distinguishing benign and malignant GGNs and, therefore, holds potential as a reference tool to assist radiologists in improving the diagnostic accuracy of GGNs, potentially enhancing their work efficiency in clinical settings.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056301741240903072017
2024-01-01
2025-04-13
The full text of this item is not currently available.

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. WHO classification of tumours.Thoracic TumoursIARC PressLyon20215564
    [Google Scholar]
  3. SucconyL. RasslD.M. BarkerA.P. McCaughanF.M. RintoulR.C. Adenocarcinoma spectrum lesions of the lung: Detection, pathology and treatment strategies.Cancer Treat. Rev.20219910223710.1016/j.ctrv.2021.10223734182217
    [Google Scholar]
  4. HuangK.L. WangS.Y. LuW.C. ChangY.H. SuJ. LuY.T. Effects of low-dose computed tomography on lung cancer screening: a systematic review, meta-analysis, and trial sequential analysis.BMC Pulm. Med.201919112610.1186/s12890‑019‑0883‑x31296196
    [Google Scholar]
  5. MazzoneP.J. LamL. Evaluating the patient with a pulmonary nodule.JAMA2022327326427310.1001/jama.2021.2428735040882
    [Google Scholar]
  6. SakuraiH. NakagawaK. WatanabeS. AsamuraH. Clinicopathologic features of resected subcentimeter lung cancer.Ann. Thorac. Surg.20159951731173810.1016/j.athoracsur.2015.01.03425825199
    [Google Scholar]
  7. DingH. ShiJ. ZhouX. XieD. SongX. YangY. LiuZ. WangH. Value of ct characteristics in predicting invasiveness of adenocarcinoma presented as pulmonary ground-glass nodules.Thorac. Cardiovasc. Surg.201765213614127575275
    [Google Scholar]
  8. FanL. FangM. LiZ. TuW. WangS. ChenW. TianJ. DongD. LiuS. Radiomics signature: A biomarker for the preoperative discrimination of lung invasive adenocarcinoma manifesting as a ground-glass nodule.Eur. Radiol.201929288989710.1007/s00330‑018‑5530‑z29967956
    [Google Scholar]
  9. EstevaA. KuprelB. NovoaR.A. KoJ. SwetterS.M. BlauH.M. ThrunS. Dermatologist-level classification of skin cancer with deep neural networks.Nature2017542763911511810.1038/nature2105628117445
    [Google Scholar]
  10. ChassagnonG. VakalopoulouM. ParagiosN. RevelM.P. Artificial intelligence applications for thoracic imaging.Eur. J. Radiol.202012310877410.1016/j.ejrad.2019.10877431841881
    [Google Scholar]
  11. LiuY. BalagurunathanY. AtwaterT. AnticS. LiQ. WalkerR.C. SmithG.T. MassionP.P. SchabathM.B. GilliesR.J. Radiological image traits predictive of cancer status in pulmonary nodules.Clin. Cancer Res.20172361442144910.1158/1078‑0432.CCR‑15‑310227663588
    [Google Scholar]
  12. RagabD.A. SharkasM. MarshallS. RenJ. Breast cancer detection using deep convolutional neural networks and support vector machines.PeerJ.20197e620110.7717/peerj.620130713814
    [Google Scholar]
  13. RenS. ZhangS. JiangT. HeY. MaZ. CaiH. XuX. LiY. CaiW. ZhouJ. LiuX. HuX. ZhangJ. YuH. ZhouC. HirschF.R. Early detection of lung cancer by using an auto-antibody panel in Chinese population.Onco-immunology201872e138410810.1080/2162402X.2017.138410829308305
    [Google Scholar]
  14. HuangW. ZhangH. GeY. DuanS. MaY. WangX. ZhouX. ZhouT. TuW. WangY. LiuS. DongP. FanL. Radiomics-based machine learning methods for volume doubling time prediction of pulmonary ground-glass nodules with baseline chest computed tomography.J. Thorac. Imaging202338530431410.1097/RTI.000000000000072537423615
    [Google Scholar]
  15. LinR.Y. ZhengY.N. LvF.J. FuB.J. LiW.J. LiangZ.R. ChuZ.G. A combined non-enhanced CT radiomics and clinical variable machine learning model for differentiating benign and malignant sub-centimeter pulmonary solid nodules.Med. Phys.20235052835284310.1002/mp.1631636810703
    [Google Scholar]
  16. WangY. ChenH. ChenY. ZhongZ. HuangH. SunP. ZhangX. WanY. LiL. YeT. PanF. YangL. A semiautomated radiomics model based on multimodal dual-layer spectral CT for preoperative discrimination of the invasiveness of pulmonary ground-glass nodules.J. Thorac. Dis.20231552505251610.21037/jtd‑22‑160537324063
    [Google Scholar]
  17. YuX. LiY. ShiC. HanB. Risk factors of lymph node metastasis in patients with non-small cell lung cancer ≤ 2 cm in size: A monocentric population-based analysis.Thorac. Cancer2018913910.1111/1759‑7714.1249029034994
    [Google Scholar]
  18. WuJ. LiC. GensheimerM. PaddaS. KatoF. ShiratoH. WeiY. SchönliebC.B. PriceS.J. JaffrayD. HeymachJ. NealJ.W. LooB.W. WakeleeH. DiehnM. LiR. Radiological tumour classification across imaging modality and histology.Nat. Mach. Intell.20213978779810.1038/s42256‑021‑00377‑034841195
    [Google Scholar]
  19. ChenX. FangM. DongD. WeiX. LiuL. XuX. JiangX. TianJ. LiuZ. A Radiomics signature in preoperative predicting degree of tumor differentiation in patients with non–small cell lung cancer.Acad. Radiol.201825121548155510.1016/j.acra.2018.02.01929572049
    [Google Scholar]
  20. ZhaoW. YangJ. SunY. LiC. WuW. JinL. YangZ. NiB. GaoP. WangP. HuaY. LiM. 3D deep learning from ct scans predicts tumor invasiveness of subcentimeter pulmonary adenocarcinomas.Cancer Res.201878246881688910.1158/0008‑5472.CAN‑18‑069630279243
    [Google Scholar]
  21. KimH. LeeD. ChoW.S. LeeJ.C. GooJ.M. KimH.C. ParkC.M. CT-based deep learning model to differentiate invasive pulmonary adenocarcinomas appearing as subsolid nodules among surgical candidates: comparison of the diagnostic performance with a size-based logistic model and radiologists.Eur. Radiol.20203063295330510.1007/s00330‑019‑06628‑432055949
    [Google Scholar]
  22. VlageaA. FalaganS. Gutiérrez-GutiérrezG. Moreno-RubioJ. MerinoM. ZambranaF. CasadoE. SerenoM. Antinuclear antibodies and cancer: A literature review.Crit. Rev. Oncol. Hematol.2018127424910.1016/j.critrevonc.2018.05.00229891110
    [Google Scholar]
  23. HuangH. YangY. ZhuY. ChenH. YangY. ZhangL. LiW. Blood protein biomarkers in lung cancer.Cancer Lett.202255121588610.1016/j.canlet.2022.21588635995139
    [Google Scholar]
  24. SullivanF.M. MairF.S. AndersonW. ArmoryP. BriggsA. ChewC. DorwardA. HaughneyJ. HogarthF. KendrickD. LittlefordR. McConnachieA. McCowanC. McMeekinN. PatelM. RauchhausP. RitchieL. RobertsonC. RobertsonJ. Robles-ZuritaJ. SarvesvaranJ. SewellH. SprouleM. TaylorT. TelloA. TreweekS. VedharaK. SchembriS. Earlier diagnosis of lung cancer in a randomised trial of an autoantibody blood test followed by imaging.Eur. Respir. J.2021571200067032732334
    [Google Scholar]
  25. BroodmanI. LindemansJ. van StenJ. BischoffR. LuiderT. Serum protein markers for the early detection of lung cancer: A focus on autoantibodies.J. Proteo. Res.201716131310.1021/acs.jproteome.6b0055927769114
    [Google Scholar]
  26. BarekeH. Juanes-VelascoP. Landeira-ViñuelaA. HernandezA.P. CruzJ.J. BellidoL. FonsecaE. Niebla-CárdenasA. MontalvilloE. GóngoraR. FuentesM. Autoimmune responses in oncology: Causes and significance.Int. J. Mol. Sci.20212215803010.3390/ijms2215803034360795
    [Google Scholar]
  27. DaiY. YanS. ZhengB. SongC. Incorporating automatically learned pulmonary nodule attributes into a convolutional neural network to improve accuracy of benign-malignant nodule classification.Phys. Med. Biol.2018632424500410.1088/1361‑6560/aaf09f30524071
    [Google Scholar]
  28. MingJ. FangX. Clinical application and research progress on CT pulmonary nodule detection based on artificial intelligence.Chinese J. Radiol.20195364
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056301741240903072017
Loading
/content/journals/cmir/10.2174/0115734056301741240903072017
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test