Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background and Objective:

The incidence of stroke is rising, and it is the second major cause of mortality and the third leading cause of disability globally. The goal of this study was to rapidly and accurately identify carotid plaques and automatically quantify plaque burden using our automated tracking and segmentation US-video system.

Methods:

We collected 88 common carotid artery transection videos (11048 frames) with a history of atherosclerosis or risk factors for atherosclerosis, which were randomly divided into training, test, and validation sets using a 6:3:1 ratio. We first trained different segmentation models to segment the carotid intima and adventitia, and calculate the maximum plaque burden automatically. Finally, we statistically analyzed the plaque burden calculated automatically by the best model and the results of manual labeling by senior sonographers.

Results:

Of the three Artificial Intelligence (AI) models, the Robust Video Matting (RVM) segmentation model's carotid intima and adventitia Dice Coefficients (DC) were the highest, reaching 0.93 and 0.95, respectively. Moreover, the RVM model has shown the strongest correlation coefficient (0.61±0.28) with senior sonographers, and the diagnostic effectiveness between the RVM model and experts was comparable with paired-t test and Bland-Altman analysis [P= 0.632 and ICC 0.01 (95% CI: -0.24~0.27), respectively].

Conclusion:

Our findings have indicated that the RVM model can be used in ultrasound carotid video. The RVM model can automatically segment and quantify atherosclerotic plaque burden at the same diagnostic level as senior sonographers. The application of AI to carotid videos offers more precise and effective methods to evaluate carotid atherosclerosis in clinical practice.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056296233240401061756
2024-04-18
2025-07-09
The full text of this item is not currently available.

References

  1. CampbellB.C.V. KhatriP. Stroke.Lancet20203961024412914210.1016/S0140‑6736(20)31179‑X32653056
    [Google Scholar]
  2. FeiginV.L. StarkB.A. JohnsonC.O. RothG.A. BisignanoC. AbadyG.G. AbbasifardM. KangevariA.M. Abd-AllahF. AbediV. AbualhasanA. Abu-RmeilehN.M.E. AbushoukA.I. AdebayoO.M. AgarwalG. AgasthiP. AhinkorahB.O. AhmadS. AhmadiS. Ahmed SalihY. AjiB. AkbarpourS. AkinyemiR.O. Al HamadH. AlahdabF. AlifS.M. AlipourV. AljunidS.M. AlmustanyirS. Al-RaddadiR.M. SalmanA.S.R. GuzmanA.N. AncuceanuR. AnderliniD. AndersonJ.A. AnsarA. AntonazzoI.C. ArablooJ. ÄrnlövJ. ArtantiK.D. AryanZ. AsgariS. AshrafT. AtharM. AtreyaA. AusloosM. BaigA.A. BaltatuO.C. BanachM. BarbozaM.A. Barker-ColloS.L. BärnighausenT.W. BaroneM.T.U. BasuS. BazmandeganG. BeghiE. BeheshtiM. BéjotY. BellA.W. BennettD.A. BensenorI.M. BezabheW.M. BezabihY.M. BhagavathulaA.S. BhardwajP. BhattacharyyaK. BijaniA. BikbovB. BirhanuM.M. BoloorA. BonnyA. BrauerM. BrennerH. BryazkaD. ButtZ.A. dos SantosC.F.L. NonatoC.I.R. BritoC.C. CarreroJ.J. OrjuelaC.C.A. CatapanoA.L. ChakrabortyP.A. CharanJ. ChoudhariS.G. ChowdhuryE.K. ChuD-T. ChungS-C. ColozzaD. CostaV.M. CostanzoS. CriquiM.H. DadrasO. DagnewB. DaiX. DalalK. DamascenoA.A.M. D’AmicoE. DandonaL. DandonaR. GelaD.J. DavletovK. De la GóngoraC.V. DesaiR. DhamnetiyaD. DharmaratneS.D. DhimalM.L. DhimalM. DiazD. DichgansM. DokovaK. DoshiR. DouiriA. DuncanB.B. EftekharzadehS. EkholuenetaleM. NahasE.N. ElgendyI.Y. ElhadiM. JaafaryE.S.I. EndresM. EndriesA.Y. ErkuD.A. FaraonE.J.A. FarooqueU. FarzadfarF. FerozeA.H. FilipI. FischerF. FloodD. GadM.M. GaidhaneS. Ghanei GheshlaghR. GhashghaeeA. GhithN. GhozaliG. GhozyS. GialluisiA. GiampaoliS. GilaniS.A. GillP.S. GnedovskayaE.V. GolechhaM. GoulartA.C. GuoY. GuptaR. GuptaV.B. GuptaV.K. GyanwaliP. Hafezi-NejadN. HamidiS. HanifA. HankeyG.J. HargonoA. HashiA. HassanT.S. HassenH.Y. HavmoellerR.J. HayS.I. HayatK. HegazyM.I. HerteliuC. HollaR. HostiucS. HousehM. HuangJ. HumayunA. HwangB-F. IacovielloL. IavicoliI. IbitoyeS.E. IlesanmiO.S. IlicI.M. IlicM.D. IqbalU. IrvaniS.S.N. IslamS.M.S. IsmailN.E. IsoH. IsolaG. IwagamiM. JacobL. JainV. JangS-I. JayapalS.K. JayaramS. JayawardenaR. JeemonP. JhaR.P. JohnsonW.D. JonasJ.B. JosephN. JozwiakJ.J. JürissonM. KalaniR. KalhorR. KalkondeY. KamathA. KamiabZ. KanchanT. KandelH. KarchA. KatotoP.D.M.C. KayodeG.A. KeshavarzP. KhaderY.S. KhanE.A. KhanI.A. KhanM. KhanM.A.B. KhatibM.N. KhubchandaniJ. KimG.R. KimM.S. KimY.J. KisaA. KisaS. KivimäkiM. KolteD. KoolivandA. LaxminarayanaK.S.L. KoyanagiA. KrishanK. KrishnamoorthyV. KrishnamurthiR.V. KumarG.A. KusumaD. La VecchiaC. LaceyB. LakH.M. LallukkaT. LasradoS. LavadosP.M. LeonardiM. LiB. LiS. LinH. LinR-T. LiuX. LoW.D. LorkowskiS. LucchettiG. SauteL.R. RazekM.A.E.H. MagnaniF.G. MahajanP.B. MajeedA. MakkiA. MalekzadehR. MalikA.A. ManafiN. MansourniaM.A. MantovaniL.G. MartiniS. MazzagliaG. MehndirattaM.M. MenezesR.G. MeretojaA. MershaA.G. Miao JonassonJ. MiazgowskiB. MiazgowskiT. MichalekI.M. MirrakhimovE.M. MohammadY. HafshejaniM.A. MohammedS. MokdadA.H. MokhayeriY. MolokhiaM. MoniM.A. MontasirA.A. MoradzadehR. MorawskaL. MorzeJ. MuruetW. MusaK.I. NagarajanA.J. NaghaviM. SwamyN.S. NascimentoB.R. NegoiR.I. KandelN.S. NguyenT.H. NorrvingB. NoubiapJ.J. NwatahV.E. OanceaB. OdukoyaO.O. OlagunjuA.T. OrruH. OwolabiM.O. PadubidriJ.R. PanaA. ParekhT. ParkE-C. KanP.F. PathakM. PeresM.F.P. PerianayagamA. PhamT-M. PiradovM.A. PodderV. PolinderS. PostmaM.J. PourshamsA. RadfarA. RafieiA. RaggiA. RahimF. Rahimi-MovagharV. RahmanM. RahmanM.A. RahmaniA.M. RajaiN. RanasingheP. RaoC.R. RaoS.J. RathiP. RawafD.L. RawafS. ReitsmaM.B. RenjithV. RenzahoA.M.N. RezapourA. RodriguezJ.A.B. RoeverL. RomoliM. RynkiewiczA. SaccoS. SadeghiM. Saeedi MoghaddamS. SahebkarA. RahmanS.U.K.M. SalahR. SamaeiM. SamyA.M. SantosI.S. MilicevicS.M.M. SarrafzadeganN. SathianB. SattinD. SchiavolinS. SchlaichM.P. SchmidtM.I. SchutteA.E. SepanlouS.G. SeylaniA. ShaF. ShahabiS. ShaikhM.A. ShannawazM. ShawonM.S.R. SheikhA. SheikhbahaeiS. ShibuyaK. SiabaniS. SilvaD.A.S. SinghJ.A. SinghJ.K. SkryabinV.Y. SkryabinaA.A. SobaihB.H. StorteckyS. StrangesS. TadesseE.G. TariganI.U. TemsahM-H. TeuschlY. ThriftA.G. TonelliM. Tovani-PaloneM.R. TranB.X. TripathiM. TsegayeG.W. UllahA. UnimB. UnnikrishnanB. VakilianA. Valadan TahbazS. VasankariT.J. VenketasubramanianN. VervoortD. VoB. VoloviciV. VosoughiK. VuG.T. VuL.G. WafaH.A. WaheedY. WangY. WijeratneT. WinklerA.S. WolfeC.D.A. WoodwardM. WuJ.H. HansonW.S. XuX. YadavL. YadollahpourA. JabbariY.S.H. YamagishiK. YatsuyaH. YonemotoN. YuC. YunusaI. ZamanM.S. ZamanS.B. ZamanianM. ZandR. ZandifarA. ZastrozhinM.S. ZastrozhinaA. ZhangY. ZhangZ-J. ZhongC. ZunigaY.M.H. MurrayC.J.L. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019.Lancet Neurol.2021201079582010.1016/S1474‑4422(21)00252‑034487721
    [Google Scholar]
  3. Ambale-VenkateshB. YangX. WuC.O. LiuK. HundleyW.G. McClellandR. GomesA.S. FolsomA.R. SheaS. GuallarE. BluemkeD.A. LimaJ.A.C. Cardiovascular event prediction by machine learning.Circ. Res.201712191092110110.1161/CIRCRESAHA.117.31131228794054
    [Google Scholar]
  4. WallisC. How artificial intelligence will change medicine.Nature20195767787S48S4810.1038/d41586‑019‑03845‑131853072
    [Google Scholar]
  5. CallawayE. ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures.Nature2020588783720320410.1038/d41586‑020‑03348‑433257889
    [Google Scholar]
  6. DesaiA.N. Artificial intelligence: Promise, pitfalls, and perspective.JAMA2020323242448244910.1001/jama.2020.873732492093
    [Google Scholar]
  7. SorinV. BarashY. KonenE. KlangE. Deep-learning natural language processing for oncological applications.Lancet Oncol.202021121553155610.1016/S1470‑2045(20)30615‑X33271088
    [Google Scholar]
  8. TouboulP.J. PratiP. ScarabinP.Y. AdraiV. ThiboutE. DucimetièreP. Use of monitoring software to improve the measurement of carotid wall thickness by B-mode imaging.J. Hypertens. Suppl.1992105S37S411403232
    [Google Scholar]
  9. SteinJ.H. KorcarzC.E. MaysM.E. DouglasP.S. PaltaM. ZhangH. LeCaireT. PaineD. GustafsonD. FanL. A semiautomated ultrasound border detection program that facilitates clinical measurement of ultrasound carotid intima-media thickness.J. Am. Soc. Echocardiogr.200518324425110.1016/j.echo.2004.12.00215746714
    [Google Scholar]
  10. MolinariF. ZengG. SuriJ.S. A state of the art review on intima–media thickness (IMT) measurement and wall segmentation techniques for carotid ultrasound.Comput. Methods Programs Biomed.2010100320122110.1016/j.cmpb.2010.04.00720478640
    [Google Scholar]
  11. UkwattaE. AwadJ. WardA.D. BuchananD. SamarabanduJ. ParragaG. FensterA. Three-dimensional ultrasound of carotid atherosclerosis: Semiautomated segmentation using a level set-based method.Med. Phys.20113852479249310.1118/1.357488721776783
    [Google Scholar]
  12. BiswasM. SabaL. ChakrabarttyS. KhannaN.N. SongH. SuriH.S. SfikakisP.P. MavrogeniS. ViskovicK. LairdJ.R. GodiaC.E. NicolaidesA. SharmaA. ViswanathanV. ProtogerouA. KitasG. PareekG. MinerM. SuriJ.S. Two-stage artificial intelligence model for jointly measurement of atherosclerotic wall thickness and plaque burden in carotid ultrasound: A screening tool for cardiovascular/stroke risk assessment.Comput. Biol. Med.202012310384710.1016/j.compbiomed.2020.10384732768040
    [Google Scholar]
  13. SeabraJ.C.R. PedroL.M. FernandesF.J. SanchesJ.M. A 3-D ultrasound-based framework to characterize the echo morphology of carotid plaques.IEEE Trans. Biomed. Eng.20095651442145310.1109/TBME.2009.201396419203880
    [Google Scholar]
  14. AzzopardiC. CamilleriK.P. HicksY.A. Bimodal automated carotid ultrasound segmentation using geometrically constrained deep neural networks.IEEE J. Biomed. Health Inform.20202441004101510.1109/JBHI.2020.296508831944969
    [Google Scholar]
  15. LoizouC.P. PetroudiS. PantziarisM. NicolaidesA.N. PattichisC.S. An integrated system for the segmentation of atherosclerotic carotid plaque ultrasound video.IEEE Trans. Ultrason. Ferroelectr. Freq. Control20146118610110.1109/TUFFC.2014.668977824402898
    [Google Scholar]
  16. LiL. HuZ. HuangY. ZhuW. WangY. ChenM. YuJ. Automatic multi-plaque tracking and segmentation in ultrasonic videos.Med. Image Anal.20217410220110.1016/j.media.2021.10220134562695
    [Google Scholar]
  17. ÇiçekÖ. AbdulkadirA. LienkampS.S. BroxT. RonnebergerO. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation.Medical Image Computing and Computer-Assisted InterventionChamSpringer International Publishing2016424432
    [Google Scholar]
  18. JiangY. ZhangY. LinX. DongJ. ChengT. LiangJ. SwinBTS: A method for 3D multimodal brain tumor segmentation using swin transformer.Brain Sci.202212679710.3390/brainsci1206079735741682
    [Google Scholar]
  19. LinS. YangL. SaleemiI. SenguptaS. Robust high-resolution video matting with temporal guidance.2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)3-8 Jan. 202220223132314110.1109/WACV51458.2022.00319
    [Google Scholar]
  20. DubuissonM.P. JainA.K. A modified Hausdorff distance for object matching.Proceedings of 12th International Conference on Pattern Recognition9-13 Oct. 1994199456656810.1109/ICPR.1994.576361
    [Google Scholar]
  21. LoizouC.P. PattichisC.S. PantziarisM. NicolaidesA. An integrated system for the segmentation of atherosclerotic carotid plaque.IEEE Trans. Inf. Technol. Biomed.200711666166710.1109/TITB.2006.89001918046941
    [Google Scholar]
  22. van EngelenA. van DijkA.C. TruijmanM.T.B. van’t KloosterR. van OpbroekA. van der LugtA. NiessenW.J. KooiM.E. de BruijneM. Multi-center MRI carotid plaque component segmentation using feature normalization and transfer learning.IEEE Trans. Med. Imaging20153461294130510.1109/TMI.2014.238473325532205
    [Google Scholar]
  23. KumarP.K. ArakiT. RajanJ. LairdJ.R. NicolaidesA. SuriJ.S. State-of-the-art review on automated lumen and adventitial border delineation and its measurements in carotid ultrasound.Comput. Methods Programs Biomed.201816315516810.1016/j.cmpb.2018.05.01530119850
    [Google Scholar]
  24. TettehG. EfremovV. ForkertN.D. SchneiderM. KirschkeJ. WeberB. ZimmerC. PiraudM. MenzeB.H. DeepVesselNet: Vessel segmentation, centerline prediction, and bifurcation detection in 3-D angiographic volumes.Front. Neurosci.20201459235210.3389/fnins.2020.59235233363452
    [Google Scholar]
  25. LiY.C. ShenT.Y. ChenC.C. ChangW.T. LeeP.Y. HuangC.C.J. Automatic detection of atherosclerotic plaque and calcification from intravascular ultrasound images by using deep convolutional neural networks.IEEE Trans. Ultrason. Ferroelectr. Freq. Control20216851762177210.1109/TUFFC.2021.305248633460377
    [Google Scholar]
  26. SabaL. BiswasM. SuriH.S. ViskovicK. LairdJ.R. GodiaC.E. NicolaidesA. KhannaN.N. ViswanathanV. SuriJ.S. Ultrasound-based carotid stenosis measurement and risk stratification in diabetic cohort: A deep learning paradigm.Cardiovasc. Diagn. Ther.20199543946110.21037/cdt.2019.09.0131737516
    [Google Scholar]
  27. BhatiaR. VashisthS. Wall shear stress analysis in stenosed carotid arteries with different shapes of plaque.Int. J. Comput. App.20171454912
    [Google Scholar]
  28. GaoW. DongY. DongF. HongS. SongD. LiuM. WeiZ. DuY. LiS. XuJ. Feasibility study of combining wall shear stress and elastography to assess the vascular status of carotid artery.Curr Med Imaging2023202310.2174/1573405620666230327125840
    [Google Scholar]
  29. VashisthS KhanM VijayR SalhanAK Acquisition and analysis of human carotid pulse waveforms during tilt table maneuvers.Int. J. Appl. Biomed. Eng.2013613239
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056296233240401061756
Loading
/content/journals/cmir/10.2174/0115734056296233240401061756
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test