Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background

Epicardial Adipose Tissue (EAT) accumulation is closely associated with the presence and severity of coronary artery disease (CAD), myocardial ischemia, plaque vulnerability, and major adverse cardiovascular events.

Objective

The aim of this study was to investigate the correlation between myocardial ischemia defined by computed tomography-derived fractional flow reserve (CT-FFR) and region-specific EAT in patients with type 2 diabetes mellitus (T2DM).

Methods

Between January 2022 and May 2023, 200 T2DM patients were randomly selected from the Department of Endocrinology in The Central Hospital of Wuhan. These patients were divided into two groups based on myocardial ischemia defined by CT-FFR: myocardial ischemia group (152 cases) and control group (48 cases). Both groups of patients used a post-treatment workstation to measure the thickness of region-specific EAT. Receiver operating characteristic (ROC) curve analysis and binary logistic regression were used to evaluate the correlation between various parameters and myocardial ischemia.

Results

Patients in the myocardial ischemia group had significantly higher values of age, male gender, systolic blood pressure, total cholesterol, triglycerides, LDL, HDL, fasting blood glucose, fasting insulin, HOMA-IR, EAT thickness in right ventricular wall, left atrioventricular groove, and superior and inferior interventricular groove. ROC curve analysis results showed that EAT thickness in the left atrioventricular groove had the largest area under the ROC curve for diagnosing myocardial ischemia (0.837 [95% CI 0.766-0.865]; P < 0.001). Binary logistic regression analysis showed that EAT thickness in the left atrioventricular groove was an independent risk factor for myocardial ischemia in patients with T2DM (P < 0.05).

Conclusion

The EAT thickness in the left atrioventricular groove is an independent risk factor for myocardial ischemia in patients with T2DM. Adipose tissue in the left atrioventricular groove region plays a major role in EAT-mediated CAD.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056291770240105101731
2024-01-01
2025-06-18
The full text of this item is not currently available.

References

  1. MadonnaR. MassaroM. ScodittiE. PescetelliI. De CaterinaR. The epicardial adipose tissue and the coronary arteries: Dangerous liaisons.Cardiovasc. Res.201911561013102510.1093/cvr/cvz06230903194
    [Google Scholar]
  2. ChristensenR.H. von ScholtenB.J. HansenC.S. JensenM.T. VilsbøllT. RossingP. JørgensenP.G. Epicardial adipose tissue predicts incident cardiovascular disease and mortality in patients with type 2 diabetes.Cardiovasc. Diabetol.201918111410.1186/s12933‑019‑0917‑y31470858
    [Google Scholar]
  3. AlexopoulosN. KatritsisD. RaggiP. Visceral adipose tissue as a source of inflammation and promoter of atherosclerosis.Atherosclerosis2014233110411210.1016/j.atherosclerosis.2013.12.02324529130
    [Google Scholar]
  4. ToyaT. CorbanM.T. ImamuraK. BoisJ.P. GulatiR. OhJ.K. LermanL.O. LermanA. Coronary perivascular epicardial adipose tissue and major adverse cardiovascular events after ST segment-elevation myocardial infarction.Atherosclerosis2020302273510.1016/j.atherosclerosis.2020.04.01232417697
    [Google Scholar]
  5. EisenbergE. McElhinneyP.A. CommandeurF. ChenX. CadetS. GoellerM. RazipourA. GransarH. CantuS. MillerR.J.H. SlomkaP.J. WongN.D. RozanskiA. AchenbachS. TamarappooB.K. BermanD.S. DeyD. Deep learning–based quantification of epicardial adipose tissue volume and attenuation predicts major adverse cardiovascular events in asymptomatic subjects.Circ. Cardiovasc. Imaging2020132e00982910.1161/CIRCIMAGING.119.00982932063057
    [Google Scholar]
  6. HellM.M. DingX. RubeauxM. SlomkaP. GransarH. TerzopoulosD. HayesS. MarwanM. AchenbachS. BermanD.S. DeyD. Epicardial adipose tissue volume but not density is an independent predictor for myocardial ischemia.J. Cardiovasc. Comput. Tomogr.201610214114910.1016/j.jcct.2016.01.00926817413
    [Google Scholar]
  7. AlamM.S. GreenR. de KempR. BeanlandsR.S. ChowB.J.W. Epicardial adipose tissue thickness as a predictor of impaired microvascular function in patients with non-obstructive coronary artery disease.J. Nucl. Cardiol.201320580481210.1007/s12350‑013‑9739‑623749262
    [Google Scholar]
  8. YuW. ChenY. ZhangF. LiuB. WangJ. ShaoX. YangX. ShiY. WangY. Association of epicardial adipose tissue volume with increased risk of hemodynamically significant coronary artery disease.Quant. Imaging Med. Surg.20231342582259310.21037/qims‑22‑70937064403
    [Google Scholar]
  9. XieZ. ZhuJ. LiW. LiuL. ZhuoK. YangR. HuF. Relationship of epicardial fat volume with coronary plaque characteristics, coronary artery calcification score, coronary stenosis, and CT-FFR for lesion-specific ischemia in patients with known or suspected coronary artery disease.Int. J. Cardiol.202133281410.1016/j.ijcard.2021.03.05233775790
    [Google Scholar]
  10. MengX. WangW. ZhangK. QiY. AnS. WangS. ZhengJ. KongJ. LiuH. WuJ. ZhouY. GaoC. TangY.D. Epicardial adipose tissue volume is associated with non-alcoholic fatty liver disease and cardiovascular risk factors in the general population.Ther. Clin. Risk Manag.2018141499150610.2147/TCRM.S16834530197519
    [Google Scholar]
  11. Gandoy-FieirasN. Gonzalez-JuanateyJ.R. EirasS. Myocardium metabolism in physiological and pathophysiological states: implications of epicardial adipose tissue and potential therapeutic targets.Int. J. Mol. Sci.2020217264110.3390/ijms2107264132290181
    [Google Scholar]
  12. ZhaoP. WongK. SunX. ReillyS.M. UhmM. LiaoZ. SkorobogatkoY. SaltielA.R. TBK1 at the crossroads of inflammation and energy homeostasis in adipose tissue.Cell20181724731743.e1210.1016/j.cell.2018.01.00729425491
    [Google Scholar]
  13. JaisA. BrüningJ.C. Hypothalamic inflammation in obesity and metabolic disease.J. Clin. Invest.20171271243210.1172/JCI8887828045396
    [Google Scholar]
  14. LeeW.J. ChenS.J. LinJ.L. HuangY.H. WangT.D. Images in cardiovascular medicine. Accessory left atrial appendage: A neglected anomaly and potential cause of embolic stroke.Circulation2008117101351135210.1161/CIRCULATIONAHA.107.74470618332280
    [Google Scholar]
  15. SacksH.S. FainJ.N. Human epicardial adipose tissue: A review.Am. Heart J.2007153690791710.1016/j.ahj.2007.03.01917540190
    [Google Scholar]
  16. RabkinS.W. Epicardial fat: properties, function and relationship to obesity.Obes. Rev.20078325326110.1111/j.1467‑789X.2006.00293.x17444966
    [Google Scholar]
  17. CerqueiraM.D. WeissmanN.J. DilsizianV. JacobsA.K. KaulS. LaskeyW.K. PennellD.J. RumbergerJ.A. RyanT. VeraniM.S. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association.Circulation2002105453954210.1161/hc0402.10297511815441
    [Google Scholar]
  18. AbbaraS. DesaiJ.C. CuryR.C. ButlerJ. NiemanK. ReddyV. Mapping epicardial fat with multi-detector computed tomography to facilitate percutaneous transepicardial arrhythmia ablation.Eur. J. Radiol.200657341742210.1016/j.ejrad.2005.12.03016434161
    [Google Scholar]
  19. ZhouF. ChenQ. LuoX. CaoW. LiZ. ZhangB. SchoepfU.J. GillC.E. GuoL. GaoH. LiQ. ShiY. TangT. LiuX. WuH. WangD. XuF. JinD. HuangS. LiH. PanC. GuH. XieL. WangX. YeJ. JiangJ. ZhaoH. FangX. XuY. XingW. LiX. YinX. LuG.M. ZhangL.J. Prognostic value of coronary CT angiography-derived fractional flow reserve in non-obstructive coronary artery disease: A prospective multicenter observational study.Front. Cardiovasc. Med.2022877801010.3389/fcvm.2021.77801035174219
    [Google Scholar]
  20. ChenC. ChenM. TaoQ. HuS. HuC. Non-contrast CT-based radiomics nomogram of pericoronary adipose tissue for predicting haemodynamically significant coronary stenosis in patients with type 2 diabetes.BMC Med. Imaging20232319910.1186/s12880‑023‑01051‑037507716
    [Google Scholar]
  21. AbelE.D. O’SheaK.M. RamasamyR. Insulin resistance: Metabolic mechanisms and consequences in the heart.Arterioscler. Thromb. Vasc. Biol.20123292068207610.1161/ATVBAHA.111.24198422895668
    [Google Scholar]
  22. WangZ ZhangY LiuW SuB. Evaluation of epicardial adipose tissue in patients of type 2 diabetes mellitus by echocardiography and its correlation with intimal medial thickness of carotid artery.Exp Clin Endocrinol Diabetes.2017125959860210.1055/s‑0042‑114035
    [Google Scholar]
  23. BrandtV. DeckerJ. SchoepfU.J. Varga-SzemesA. EmrichT. AquinoG. BayerR.R.II CarsonL. SullivanA. EllisL. von KnebelD.P.L. EbersbergerU. BekeredjianR. TescheC. Additive value of epicardial adipose tissue quantification to coronary CT angiography–derived plaque characterization and CT fractional flow reserve for the prediction of lesion-specific ischemia.Eur. Radiol.20223264243425210.1007/s00330‑021‑08481‑w35037968
    [Google Scholar]
  24. DuY. YangL. LiuY. YangB. LvS. HuC. ZhuY. ZhangH. MaQ. WangZ. LiuY. ShiD. ZhaoY. XuL. ZhouY. Relation between quantity and quality of peri-coronary epicardial adipose tissue and its underlying hemodynamically significant coronary stenosis.BMC Cardiovasc. Disord.202020122610.1186/s12872‑020‑01499‑w32414371
    [Google Scholar]
  25. MontiC.B. CodariM. De CeccoC.N. SecchiF. SardanelliF. StillmanA.E. Novel imaging biomarkers: Epicardial adipose tissue evaluation.Br. J. Radiol.20209311132019077010.1259/bjr.2019077031782934
    [Google Scholar]
  26. WangQ. ChiJ. WangC. YangY. TianR. ChenX. Epicardial adipose tissue in patients with coronary artery disease: A meta-analysis.J. Cardiovasc. Dev. Dis.20229825310.3390/jcdd908025336005417
    [Google Scholar]
  27. ConceiçãoG. MartinsD. M MirandaI. Leite-MoreiraA.F. VitorinoR. Falcão-PiresI. Unraveling the role of epicardial adipose tissue in coronary artery disease: Partners in crime?Int. J. Mol. Sci.20202122886610.3390/ijms2122886633238643
    [Google Scholar]
  28. HirataY. TabataM. KurobeH. MotokiT. AkaikeM. NishioC. HigashidaM. MikasaH. NakayaY. TakanashiS. IgarashiT. KitagawaT. SataM. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue.J. Am. Coll. Cardiol.201158324825510.1016/j.jacc.2011.01.04821737014
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056291770240105101731
Loading
/content/journals/cmir/10.2174/0115734056291770240105101731
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test