Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Some patients with suspected brain metastases (BM) could not tolerate longer scanning examinations according to the standardized MRI protocol.

Objective

The purpose of this study was to evaluate the clinical value of contrast-enhanced fast fluid-attenuated inversion recovery (CE FLAIR) imaging in combination with contrast-enhanced T1 weighted imaging (CE T1WI) in detecting BM of lung cancer and explore a quick and effective MRI protocol.

Material and Methods

In 201 patients with lung cancers and suspected BM, T1WI and FLAIR were performed before and after administration of gadopentetate dimeglumine. Two radiologists reviewed pre- and post-contrast images to determine the presence of abnormal contrast enhancement or signal intensity and decided whether it was metastatic or not on CE T1WI (Group 1) and CE FLAIR (Group 2). The number, locations and features of abnormal findings in two groups were recorded. Receiver Operating Characteristic (ROC) analyses were conducted in three groups: Group 1, 2 and 3(combination of CE FLAIR and CE T1WI).

Results

A total of 714 abnormal findings were revealed, of which 672 were considered as BM and 42 nonmetastatic. Superficial and small metastases(≤10mm) in parenchyma and ependyma, leptomeningeal and non-expansive skull metastases were typically better seen on CE FLAIR. The areas under ROC in the three groups were 0.720,0.887 and 0.973, respectively. Group 3 was significantly better in diagnostic efficiency of BMs than Group 1 (p<0.0001) or Group 2 (p=0.0006).

Conclusion

The combination of CE T1WI and CE FLAIR promotes diagnostic performance and results in better observation and characterization of BM in patients with lung cancers. It provides a quick and efficient way of detecting BM.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056288838240201040400
2024-01-01
2025-04-10
The full text of this item is not currently available.

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  2. RobnettT.J. MachtayM. StevensonJ.P. AlgazyK.M. HahnS.M. Factors affecting the risk of brain metastases after definitive chemoradiation for locally advanced non-small-cell lung carcinoma.J. Clin. Oncol.20011951344134910.1200/JCO.2001.19.5.134411230477
    [Google Scholar]
  3. SperdutoP.W. YangT.J. BealK. PanH. BrownP.D. BangdiwalaA. ShanleyR. YehN. GasparL.E. BraunsteinS. SneedP. BoyleJ. KirkpatrickJ.P. MakK.S. ShihH.A. EngelmanA. RobergeD. ArvoldN.D. AlexanderB. AwadM.M. ContessaJ. ChiangV. HardieJ. MaD. LouE. SperdutoW. MehtaM.P. Estimating survival in patients with lung cancer and brain metastases.JAMA Oncol.20173682783110.1001/jamaoncol.2016.383427892978
    [Google Scholar]
  4. LutterbachJ. BarteltS. OstertagC. Long-term survival in patients with brain metastases.J. Cancer Res. Clin. Oncol.2002128841742510.1007/s00432‑002‑0354‑112200598
    [Google Scholar]
  5. AddeoR. De RosaC. FaiolaV. LeoL. CennamoG. MontellaL. GuarrasiR. VincenziB. CaragliaM. Del PreteS. Phase 2 trial of temozolomide using protracted low-dose and whole-brain radiotherapy for nonsmall cell lung cancer and breast cancer patients with brain metastases.Cancer200811392524253110.1002/cncr.2385918798231
    [Google Scholar]
  6. RussellE.J. GeremiaG.K. JohnsonC.E. HuckmanM.S. RamseyR.G. Washburn-BleckJ. TurnerD.A. NorusisM. Multiple cerebral metastases: Detectability with Gd-DTPA-enhanced MR imaging.Radiology1987165360961710.1148/radiology.165.3.33174953317495
    [Google Scholar]
  7. YuhW.T.C. EngelkenJ.D. MuhonenM.G. MayrN.A. FisherD.J. EhrhardtJ.C. Experience with high-dose gadolinium MR imaging in the evaluation of brain metastases.AJNR Am. J. Neuroradiol.19921313353451595472
    [Google Scholar]
  8. YuhW.T.C. TaliE.T. NguyenH.D. SimonsonT.M. MayrN.A. FisherD.J. The effect of contrast dose, imaging time, and lesion size in the MR detection of intracerebral metastasis.AJNR Am. J. Neuroradiol.19951623733807726087
    [Google Scholar]
  9. SchörnerW. LaniadoM. NiendorfH.P. SchubertC. FelixR. Time-dependent changes in image contrast in brain tumors after gadolinium-DTPA.AJNR Am. J. Neuroradiol.198676101310203098065
    [Google Scholar]
  10. SzeG. JohnsonC. KawamuraY. GoldbergS.N. LangeR. FriedlandR.J. WolfR.J. Comparison of single- and triple-dose contrast material in the MR screening of brain metastases.AJNR Am. J. Neuroradiol.19981958218289613494
    [Google Scholar]
  11. MathewsV.P. CaldemeyerK.S. LoweM.J. GreenspanS.L. WeberD.M. UlmerJ.L. Brain: gadolinium-enhanced fast fluid-attenuated inversion-recovery MR imaging.Radiology1999211125726310.1148/radiology.211.1.r99mr2525710189481
    [Google Scholar]
  12. EssigM. KnoppM.V. SchoenbergS.O. HawighorstH. WenzF. DebusJ. van KaickG. Cerebral gliomas and metastases: Assessment with contrast-enhanced fast fluid-attenuated inversion-recovery MR imaging.Radiology1999210255155710.1148/radiology.210.2.r99ja2255110207443
    [Google Scholar]
  13. KaufmannT.J. SmitsM. BoxermanJ. HuangR. BarboriakD.P. WellerM. ChungC. TsienC. BrownP.D. ShankarL. GalanisE. GerstnerE. van den BentM.J. BurnsT.C. ParneyI.F. DunnG. BrastianosP.K. LinN.U. WenP.Y. EllingsonB.M. Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases.Neuro-oncol.202022675777210.1093/neuonc/noaa03032048719
    [Google Scholar]
  14. RydbergJ.N. HammondC.A. GrimmR.C. EricksonB.J. JackC.R.Jr HustonJ.III RiedererS.J. Initial clinical experience in MR imaging of the brain with a fast fluid-attenuated inversion-recovery pulse sequence.Radiology1994193117318010.1148/radiology.193.1.80908888090888
    [Google Scholar]
  15. ErcanN. GultekinS. CelikH. TaliT.E. OnerY.A. ErbasG. Diagnostic value of contrast-enhanced fluid-attenuated inversion recovery MR imaging of intracranial metastases.AJNR Am. J. Neuroradiol.200425576176515140715
    [Google Scholar]
  16. GooH.W. ChoiC.G. Post-contrast FLAIR MR imaging of the brain in children: Normal and abnormal intracranial enhancement.Pediatr. Radiol.2003331284384910.1007/s00247‑003‑1057‑814551756
    [Google Scholar]
  17. AbsintaM. VuoloL. RaoA. NairG. SatiP. CorteseI.C.M. OhayonJ. FentonK. Reyes-MantillaM.I. MaricD. CalabresiP.A. ButmanJ.A. PardoC.A. ReichD.S. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis.Neurology2015851182810.1212/WNL.000000000000158725888557
    [Google Scholar]
  18. UedaF. OkudaM. AburanoH. YoshieY. MatsuiO. GabataT. Cranial pachymeningeal involvement in POEMS syndrome: Evaluation by pre- and post-contrast FLAIR and T<sub>1</sub>-weighted Imaging.Magn. Reson. Med. Sci.201716323123710.2463/mrms.mp.2015‑001428003622
    [Google Scholar]
  19. ParmarH. SitohY.Y. AnandP. ChuaV. HuiF. Contrast-enhanced flair imaging in the evaluation of infectious leptomeningeal diseases.Eur. J. Radiol.2006581899510.1016/j.ejrad.2005.11.01216386866
    [Google Scholar]
  20. GalassiW. PhuttharakW. HesselinkJ.R. HealyJ.F. DietrichR.B. ImbesiS.G. Intracranial meningeal disease: Comparison of contrast-enhanced MR imaging with fluid-attenuated inversion recovery and fat-suppressed T1-weighted sequences.AJNR Am. J. Neuroradiol.200526355355915760865
    [Google Scholar]
  21. BagheriM.H. MeshksarA. NabavizadehS.A. Borhani-HaghighiA. AshjazadehN. NiksereshtA.R. Diagnostic value of contrast-enhanced fluid-attenuated inversion-recovery and delayed contrast-enhanced brain MRI in multiple sclerosis.Acad. Radiol.2008151152310.1016/j.acra.2007.07.02218078903
    [Google Scholar]
  22. KimS.C. ParkS.W. RyooI. JungS.C. YunT.J. ChoiS.H. KimJ. SohnC.H. Contrast-enhanced FLAIR (fluid-attenuated inversion recovery) for evaluating mild traumatic brain injury.PLoS One201497e10222910.1371/journal.pone.010222925028975
    [Google Scholar]
  23. LeeK.M. KimJ.H. KimE. ChoiB.S. BaeY.J. BaeH.J. Early stage of hyperintense acute reperfusion marker on contrast-enhanced FLAIR images in patients with acute stroke. AJR Am. J. Roentgenol.201620661272127510.2214/AJR.15.1485727010867
    [Google Scholar]
  24. LeeE.J. KimK.K. LeeE.K. LeeJ.E. Characteristic MRI findings in hyperglycaemia-induced seizures: diagnostic value of contrast-enhanced fluid-attenuated inversion recovery imaging.Clin. Radiol.201671121240124710.1016/j.crad.2016.05.00627289324
    [Google Scholar]
  25. LeeE.K. LeeE.J. KimS. LeeY.S. Importance of contrast-enhanced fluid-attenuated inversion recovery magnetic resonance imaging in various intracranial pathologic condition.Korean J. Radiol.201617112714110.3348/kjr.2016.17.1.12726798225
    [Google Scholar]
  26. OguzK.K. CilaA. Rim enhancement of meningiomas on fast FLAIR imaging.Neuroradiology2003452788110.1007/s00234‑002‑0914‑812592487
    [Google Scholar]
  27. TeraeS. YoshidaD. KudoK. ThaK.K. FujinoM. MiyasakaK. Contrast-enhanced FLAIR imaging in combination with pre- and postcontrast magnetization transfer T1-weighted imaging: Usefulness in the evaluation of brain metastases.J. Magn. Reson. Imaging200725347948710.1002/jmri.2084717326092
    [Google Scholar]
  28. FıratA.K. ŞanlıB. KarakaşH.M. ErdemG. The effect of intravenous gadolinium-DTPA on diffusion-weighted imaging.Neuroradiology200648746547010.1007/s00234‑006‑0091‑216673073
    [Google Scholar]
  29. YamadaK. KubotaH. KizuO. NakamuraH. ItoH. YuenS. TanakaO. KubotaT. MakinoM. Van CauterenM. NishimuraT. Effect of intravenous gadolinium-DTPA on diffusion-weighted images: Evaluation of normal brain and infarcts.Stroke20023371799180210.1161/01.STR.0000020355.29423.6112105356
    [Google Scholar]
  30. JinT. GeM. HuangR. YangY. LiuT. ZhanQ. YaoZ. ZhangH. Utility of contrast-enhanced T2 FLAIR for imaging brain metastases using a half-dose high-relaxivity contrast agent.AJNR Am. J. Neuroradiol.202142345746310.3174/ajnr.A693133361381
    [Google Scholar]
  31. ChenW. WangL. ZhuW. XiaL. QiJ. FengD. LuoX. Multicontrast single-slab 3D MRI to detect cerebral metastasis.AJR Am. J. Roentgenol.20121981273210.2214/AJR.11.703022194476
    [Google Scholar]
  32. AhnS.J. ChungT.S. ChangJ.H. LeeS.K. The added value of double dose gadolinium enhanced 3D T2 fluid-attenuated inversion recovery for evaluating small brain metastases.Yonsei Med. J.20145551231123710.3349/ymj.2014.55.5.123125048479
    [Google Scholar]
  33. ChangE.L. HassenbuschS.J.III ShiuA.S. LangF.F. AllenP.K. SawayaR. MaorM.H. The role of tumor size in the radiosurgical management of patients with ambiguous brain metastases.Neurosurgery200353227228110.1227/01.NEU.0000073546.61154.9A12925241
    [Google Scholar]
  34. RanjanT. AbreyL.E. Current management of metastatic brain disease.Neurotherapeutics20096359860310.1016/j.nurt.2009.04.01219560748
    [Google Scholar]
  35. TsuchiyaK. KataseS. YoshinoA. HachiyaJ. Pre- and postcontrast FLAIR MR imaging in the diagnosis of intracranial meningeal pathology.Radiat. Med.200018636336811153689
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056288838240201040400
Loading
/content/journals/cmir/10.2174/0115734056288838240201040400
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test