Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background:

Ultrasound-guided microwave ablation (MWA) is recommended as a first-line treatment for early liver cancer due to its minimally invasive, efficient, and cost-effective nature. It utilizes microwave radiation to heat and destroy tumor cells as a local thermal therapy and offers the benefits of being minimally invasive, repeatable, and applicable to tumors of various sizes and locations. However, despite the efficacy of MWA, early recurrence after treatment remains a challenge, particularly when it occurs within a year and has a significant impact on the prognosis of the patient.

Objective:

This study aimed to identify the risk factors for early recurrence after MWA in patients with hepatocellular carcinoma (HCC) and establish a predictive model.

Methods:

A total of 119 patients with hepatocellular carcinoma (HCC) treated in the Department of Ultrasound at the First Affiliated Hospital of the Air Force Medical University from January, 2020 to April, 2022 were included in this study. Patients were categorized into the early recurrence group and the non-early recurrence group based on whether recurrence occurred within 1 year. We conducted univariate analysis on 29 variables. A predictive model was developed using multiple-factor logistic regression analysis, and a risk column graph was created.

Results:

A total of 28 patients were included in the early recurrence group, with an early recurrence rate of 23%. Tumor size ≥ 3cm, multiple tumors, AST > 35 U/L, low pathological differentiation, CD34 positive, Ki67 level, quantitative parameters mean transit time (mTT), and rise time (RT) were confirmed as risk factors affecting early recurrence after ablation (P < 0.05). Furthermore, the model constructed based on these 5 predictive factors, including tumor size, tumor number, pathological differentiation, CD34, and quantitative analysis parameter mTT, demonstrated good predictive ability, with an AUC of 0.93 in the training set and 0.86 in the validation set.

Conclusion:

Our research indicates that the risk column graph can be utilized to predict the risk of early postoperative recurrence in patients after MWA. This contributes to guiding personalized clinical treatment decisions and provides important references for improving the prognosis of patients.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056291428240523060933
2024-01-01
2025-06-22
The full text of this item is not currently available.

References

  1. FitzmauriceC. AbateD. AbbasiN. AbbastabarH. Abd-AllahF. Abdel-RahmanO. AbdelalimA. AbdoliA. AbdollahpourI. AbdulleA.S.M. AbebeN.D. AbrahaH.N. Abu-RaddadL.J. AbualhasanA. AdedejiI.A. AdvaniS.M. AfaridehM. AfshariM. AghaaliM. AgiusD. AgrawalS. AhmadiA. AhmadianE. AhmadpourE. AhmedM.B. AkbariM.E. AkinyemijuT. Al-AlyZ. AlAbdulKaderA.M. AlahdabF. AlamT. AlameneG.M. AlemnewB.T.T. AleneK.A. AliniaC. AlipourV. AljunidS.M. BakesheiF.A. AlmadiM.A.H. Almasi-HashianiA. AlsharifU. AlsowaidiS. Alvis-GuzmanN. AminiE. AminiS. AmoakoY.A. AnbariZ. AnberN.H. AndreiC.L. AnjomshoaM. AnsariF. AnsariadiA. AppiahS.C.Y. Arab-ZozaniM. ArablooJ. ArefiZ. AremuO. AreriH.A. ArtamanA. AsayeshH. AsfawE.T. AshagreA.F. AssadiR. AtaeiniaB. AtalayH.T. AtaroZ. AtiqueS. AusloosM. Avila-BurgosL. AvokpahoE.F.G.A. AwasthiA. AwokeN. Ayala QuintanillaB.P. AyanoreM.A. AyeleH.T. BabaeeE. BachaU. BadawiA. BagherzadehM. BagliE. BalakrishnanS. BalouchiA. BärnighausenT.W. BattistaR.J. BehzadifarM. BehzadifarM. BekeleB.B. BelayY.B. BelaynehY.M. BerfieldK.K.S. BerhaneA. BernabeE. BeuranM. BhaktaN. BhattacharyyaK. BiadgoB. BijaniA. Bin SayeedM.S. BirungiC. BisignanoC. BitewH. BjørgeT. BleyerA. BogaleK.A. BojiaH.A. BorzìA.M. BosettiC. Bou-OrmI.R. BrennerH. BrewerJ.D. BrikoA.N. BrikoN.I. Bustamante-TeixeiraM.T. ButtZ.A. CarrerasG. CarreroJ.J. CarvalhoF. CastroC. CastroF. Catalá-LópezF. CerinE. ChaiahY. ChanieW.F. ChattuV.K. ChaturvediP. ChauhanN.S. ChehraziM. ChiangP.P.C. ChichiabelluT.Y. Chido-AmajuoyiO.G. Chimed-OchirO. ChoiJ.Y.J. ChristopherD.J. ChuD.T. ConstantinM.M. CostaV.M. CrocettiE. CroweC.S. CuradoM.P. DahlawiS.M.A. DamianiG. DarwishA.H. DaryaniA. das NevesJ. DemekeF.M. DemisA.B. DemissieB.W. DemozG.T. Denova-GutiérrezE. DerakhshaniA. DeribeK.S. DesaiR. DesalegnB.B. DestaM. DeyS. DharmaratneS.D. DhimalM. DiazD. DinberuM.T.T. DjalaliniaS. DokuD.T. DrakeT.M. DubeyM. DubljaninE. DukenE.E. EbrahimiH. EffiongA. EftekhariA. El SayedI. ZakiM.E.S. El-JaafaryS.I. El-KhatibZ. EleminehD.A. ElkoutH. EllenbogenR.G. ElsharkawyA. EmamianM.H. EndalewD.A. EndriesA.Y. EshratiB. FadhilI. Fallah OmraniV. FaramarziM. FarhangiM.A. FarioliA. FarzadfarF. FentahunN. FernandesE. FeyissaG.T. FilipI. FischerF. FisherJ.L. ForceL.M. ForoutanM. FreitasM. FukumotoT. FutranN.D. GallusS. GankpeF.G. GayesaR.T. GebrehiwotT.T. GebremeskelG.G. GedefawG.A. GelawB.K. GetaB. GetachewS. GezaeK.E. GhafourifardM. GhajarA. GhashghaeeA. GholamianA. GillP.S. GinindzaT.T.G. GirmayA. GizawM. GomezR.S. GopalaniS.V. GoriniG. GoulartB.N.G. GradaA. Ribeiro GuerraM. GuimaraesA.L.S. GuptaP.C. GuptaR. HadkhaleK. Haj-MirzaianA. Haj-MirzaianA. HamadehR.R. HamidiS. HanforeL.K. HaroJ.M. HasankhaniM. HasanzadehA. HassenH.Y. HayR.J. HayS.I. HenokA. HenryN.J. HerteliuC. HidruH.D. HoangC.L. HoleM.K. HoogarP. HoritaN. HosgoodH.D. HosseiniM. HosseinzadehM. HostiucM. HostiucS. HousehM. HussenM.M. IleanuB. IlicM.D. InnosK. IrvaniS.S.N. IsehK.R. IslamS.M.S. IslamiF. Jafari BalalamiN. JafariniaM. JahangiryL. JahaniM.A. JahanmehrN. JakovljevicM. JamesS.L. JavanbakhtM. JayaramanS. JeeS.H. JenabiE. JhaR.P. JonasJ.B. JonnagaddalaJ. JooT. JungariS.B. JürissonM. KabirA. KamangarF. KarchA. KarimiN. KarimianA. KasaeianA. KasahunG.G. KassaB. KassaT.D. KassawM.W. KaulA. KeiyoroP.N. KelboreA.G. KerboA.A. KhaderY.S. KhalilarjmandiM. KhanE.A. KhanG. KhangY.H. KhatabK. KhaterA. KhayamzadehM. Khazaee-PoolM. KhazaeiS. KhojaA.T. KhosraviM.H. KhubchandaniJ. KianipourN. KimD. KimY.J. KisaA. KisaS. Kissimova-SkarbekK. KomakiH. KoyanagiA. KrohnK.J. BicerB.K. KugbeyN. KumarV. KuupielD. La VecchiaC. LadD.P. LakeE.A. LakewA.M. LalD.K. LamiF.H. LanQ. LasradoS. LauriolaP. LazarusJ.V. LeighJ. LeshargieC.T. LiaoY. LimenihM.A. ListlS. LopezA.D. LopukhovP.D. LuneviciusR. MadadinM. MagdeldinS. El RazekH.M.A. MajeedA. MalekiA. MalekzadehR. ManafiA. ManafiN. ManamoW.A. MansourianM. MansourniaM.A. MantovaniL.G. MaroufizadehS. MartiniS.M.S. Mashamba-ThompsonT.P. MassenburgB.B. MaswabiM.T. MathurM.R. McAlindenC. McKeeM. MeheretuH.A.A. MehrotraR. MehtaV. MeierT. MelakuY.A. MelesG.G. MelesH.G. MeleseA. MelkuM. MemiahP.T.N. MendozaW. MenezesR.G. MeratS. MeretojaT.J. MestrovicT. MiazgowskiB. MiazgowskiT. MihretieK.M.M. MillerT.R. MillsE.J. MirS.M. MirzaeiH. MirzaeiH.R. MishraR. MoazenB. MohammadD.K. MohammadK.A. MohammadY. DarweshA.M. MohammadbeigiA. MohammadiH. MohammadiM. MohammadianM. Mohammadian-HafshejaniA. Mohammadoo-KhorasaniM. MohammadpourhodkiR. MohammedA.S. MohammedJ.A. MohammedS. MohebiF. MokdadA.H. MonastaL. MoodleyY. MoosazadehM. MoossaviM. MoradiG. Moradi-JooM. Moradi-LakehM. MoradpourF. MorawskaL. Morgado-da-CostaJ. MorisakiN. MorrisonS.D. MosapourA. MousaviS.M. MucheA.A. MuhammedO.S.S. MusaJ. NabhanA.F. NaderiM. NagarajanA.J. NagelG. NahvijouA. NaikG. NajafiF. NaldiL. NamH.S. NasiriN. NazariJ. NegoiI. NeupaneS. NewcombP.A. NggadaH.A. NgunjiriJ.W. NguyenC.T. NikniazL. NingrumD.N.A. NirayoY.L. NixonM.R. NnajiC.A. NojomiM. NosratnejadS. ShiadehM.N. ObsaM.S. Ofori-AsensoR. OgboF.A. OhI.H. OlagunjuA.T. OlagunjuT.O. OluwasanuM.M. OmonisiA.E. OnwujekweO.E. OommenA.M. OrenE. Ortega-AltamiranoD.D.V. OtaE. OtstavnovS.S. OwolabiM.O. P AM. PadubidriJ.R. PakhaleS. PakpourA.H. PanaA. ParkE.K. ParsianH. PashaeiT. PatelS. PatilS.T. PenniniA. PereiraD.M. PiccinelliC. PillayJ.D. PirestaniM. PishgarF. PostmaM.J. PourjafarH. PourmalekF. PourshamsA. PrakashS. PrasadN. QorbaniM. RabieeM. RabieeN. RadfarA. RafieiA. RahimF. RahimiM. RahmanM.A. RajatiF. RanaS.M. RaoofiS. RathG.K. RawafD.L. RawafS. ReinerR.C. RenzahoA.M.N. RezaeiN. RezapourA. RibeiroA.I. RibeiroD. RonfaniL. RoroE.M. RoshandelG. RostamiA. SaadR.S. SabbaghP. SabourS. SaddikB. SafiriS. SahebkarA. SalahshoorM.R. SalehiF. SalemH. SalemM.R. SalimzadehH. SalomonJ.A. SamyA.M. SanabriaJ. Santric MilicevicM.M. SartoriusB. SarveazadA. SathianB. SatpathyM. SavicM. SawhneyM. SayyahM. SchneiderI.J.C. SchöttkerB. SekerijaM. SepanlouS.G. SepehrimaneshM. SeyedmousaviS. ShaahmadiF. ShabaninejadH. ShahbazM. ShaikhM.A. ShamshirianA. ShamsizadehM. SharafiH. SharafiZ. SharifM. SharifiA. SharifiH. SharmaR. SheikhA. ShirkoohiR. ShuklaS.R. SiS. SiabaniS. SilvaD.A.S. SilveiraD.G.A. SinghA. SinghJ.A. SisayS. SitasF. SobngwiE. SoofiM. SorianoJ.B. StathopoulouV. SufiyanM.B. Tabarés-SeisdedosR. TabuchiT. TakahashiK. TamtajiO.R. TarawnehM.R. TassewS.G. TaymooriP. Tehrani-BanihashemiA. TemsahM.H. TemsahO. TesfayB.E. TesfayF.H. TeshaleM.Y. TessemaG.A. ThapaS. TlayeK.G. Topor-MadryR. Tovani-PaloneM.R. TrainiE. TranB.X. TranK.B. TsadikA.G. UllahI. UthmanO.A. VacanteM. VaeziM. Varona PérezP. VeisaniY. VidaleS. ViolanteF.S. VlassovV. VollsetS.E. VosT. VosoughiK. VuG.T. VujcicI.S. WabingaH. WachamoT.M. WagnewF.S. WaheedY. WeldegebrealF. WeldesamuelG.T. WijeratneT. WondafrashD.Z. WondeT.E. WondmienehA.B. WorkieH.M. YadavR. YadegarA. YadollahpourA. YaseriM. Yazdi-FeyzabadiV. YeshanehA. YimamM.A. YimerE.M. YismaE. YonemotoN. YounisM.Z. YousefiB. YousefifardM. YuC. ZabehE. ZadnikV. MoghadamT.Z. ZaidiZ. ZamaniM. ZandianH. ZangenehA. ZakiL. ZendehdelK. ZenebeZ.M. ZewaleT.A. ZiapourA. ZodpeyS. MurrayC.J.L. Global Burden of Disease Cancer Collaboration Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017.JAMA Oncol.20195121749176810.1001/jamaoncol.2019.299631560378
    [Google Scholar]
  2. ZhouJ. SunH. WangZ. CongW. WangJ. ZengM. ZhouW. BieP. LiuL. WenT. HanG. WangM. LiuR. LuL. RenZ. ChenM. ZengZ. LiangP. LiangC. ChenM. YanF. WangW. JiY. YunJ. CaiD. ChenY. ChengW. ChengS. DaiC. GuoW. HuaB. HuangX. JiaW. LiY. LiY. LiangJ. LiuT. LvG. MaoY. PengT. RenW. ShiH. ShiG. TaoK. WangW. WangX. WangZ. XiangB. XingB. XuJ. YangJ. YangJ. YangY. YangY. YeS. YinZ. ZhangB. ZhangB. ZhangL. ZhangS. ZhangT. ZhaoY. ZhengH. ZhuJ. ZhuK. LiuR. ShiY. XiaoY. DaiZ. TengG. CaiJ. WangW. CaiX. LiQ. ShenF. QinS. DongJ. FanJ. Guidelines for the diagnosis and treatment of hepatocellular carcinoma (2019 edition).Liver Cancer20209668272010.1159/00050942433442540
    [Google Scholar]
  3. XuX.L. LiuX.D. LiangM. LuoB.M. Radiofrequency ablation versus hepatic resection for small hepatocellular carcinoma: Systematic review of randomized controlled trials with meta-analysis and trial sequential analysis.Radiology2018287246147210.1148/radiol.201716275629135366
    [Google Scholar]
  4. JungE.M. ClevertD.A. Contrast ultrasonography (CEUS) and image fusion to perform liver interventions.Radiologe201858653854410.1007/s00117‑018‑0411‑729797043
    [Google Scholar]
  5. VogelA. CervantesA. ChauI. DanieleB. LlovetJ.M. MeyerT. NaultJ.C. NeumannU. RickeJ. SangroB. SchirmacherP. VerslypeC. ZechC.J. ArnoldD. MartinelliE. ESMO Guidelines Committee Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up.Ann. Oncol.201829Suppl. 4iv238iv25510.1093/annonc/mdy30830285213
    [Google Scholar]
  6. MarascoG. ColecchiaA. ColliA. RavaioliF. CasazzaG. Bacchi ReggianiM.L. CucchettiA. CesconM. FestiD. Role of liver and spleen stiffness in predicting the recurrence of hepatocellular carcinoma after resection.J. Hepatol.201970344044810.1016/j.jhep.2018.10.02230389551
    [Google Scholar]
  7. ChanA.W.H. ZhongJ. BerhaneS. ToyodaH. CucchettiA. ShiK. TadaT. ChongC.C.N. XiangB.D. LiL.Q. LaiP.B.S. MazzaferroV. García-FiñanaM. KudoM. KumadaT. RoayaieS. JohnsonP.J. Development of pre and post-operative models to predict early recurrence of hepatocellular carcinoma after surgical resection.J. Hepatol.20186961284129310.1016/j.jhep.2018.08.02730236834
    [Google Scholar]
  8. NiZ. WuB. LiM. HanX. HaoX. ZhangY. ChengW. GuoC. Prediction model and nomogram of early recurrence of hepatocellular carcinoma after radiofrequency ablation based on logistic regression analysis.Ultrasound Med. Biol.20224891733174410.1016/j.ultrasmedbio.2022.04.21735690523
    [Google Scholar]
  9. Xia chuanQ. XiangZ. Predictive value of contrast-enhanced ultrasound for early recurrence of single lesion hepatocellular carcinoma after curative resection.Ultrasonic Imaging2019411495810.1177/0161734618815231
    [Google Scholar]
  10. HanX. DongJ. LiuZ. WuB. TianY. TanH. ChengW. Quantitative dynamic contrast-enhanced ultrasound to predict intrahepatic recurrence of hepatocellular carcinoma after radiofrequency ablation: A cohort study.Int. J. Hyperthermia20203711066107310.1080/02656736.2020.181757632924654
    [Google Scholar]
  11. BezanA. MrsicE. KriegerD. StojakovicT. PummerK. ZigeunerR. HuttererG.C. PichlerM. The preoperative AST/ALT (De Ritis) ratio represents a poor prognostic factor in a cohort of patients with nonmetastatic renal cell carcinoma.J. Urol.20151941303510.1016/j.juro.2015.01.08325623738
    [Google Scholar]
  12. HoC.M. WuC.Y. LeeP.H. LaiH.S. HoM.C. WuY.M. HuR.H. Analysis of the risk factors of untransplantable recurrence after primary curative resection for patients with hepatocellular carcinoma.Ann. Surg. Oncol.20132082526253310.1245/s10434‑013‑2940‑723504121
    [Google Scholar]
  13. MontasserM.F. ShakerM.K. AlbreedyA.M. MontasserI.F. El DorryA. Risk factors for early intrahepatic distant recurrence after radiofrequency ablation for hepatocellular carcinoma in E gyptian patients.J. Dig. Dis.2014151267668310.1111/1751‑2980.1219025214183
    [Google Scholar]
  14. PaschoalJ.P. BernardoV. CanedoN.H.S. RibeiroO.D. Caroli-BottinoA. PannainV.L. Microvascular density of regenerative nodule to small hepatocellular carcinoma by automated analysis using CD105 and CD34 immunoexpression.BMC Cancer20141417210.1186/1471‑2407‑14‑7224507660
    [Google Scholar]
  15. ShiJY XingQ DuanM Inferring the progression of multifocal liver cancer from spatial and temporal genomic heterogeneity.Oncotar⁃ get2016732867287710.18632/oncotarget.6558
    [Google Scholar]
  16. TanY. DingX. LongH. YeJ. HuangT. LinY. LvM. XieX. HuangG. Percutaneous ethanol injection enhanced the efficacy of radiofrequency ablation in the treatment of HCC: an insight into the mechanism of ethanol action.Int. J. Hyperthermia20213811394140010.1080/02656736.2021.197785734542014
    [Google Scholar]
  17. ShiJ. SunQ. WangY. JingX. DingJ. YuanQ. RenC. ShanS. WangY. DuZ. Comparison of microwave ablation and surgical resection for treatment of hepatocellular carcinomas conforming to M ilan criteria.J. Gastroenterol. Hepatol.20142971500150710.1111/jgh.1257224628534
    [Google Scholar]
  18. WongS.N. LinC.J. LinC.C. ChenW.T. CuaI.H.Y. LinS.M. Combined percutaneous radiofrequency ablation and ethanol injection for hepatocellular carcinoma in high-risk locations.AJR Am. J. Roentgenol.20081903W187W19510.2214/AJR.07.253718287411
    [Google Scholar]
  19. HeimbachJ.K. KulikL.M. FinnR.S. SirlinC.B. AbecassisM.M. RobertsL.R. ZhuA.X. MuradM.H. MarreroJ.A. AASLD guidelines for the treatment of hepatocellular carcinoma.Hepatology201867135838010.1002/hep.2908628130846
    [Google Scholar]
  20. TaiC.J. HuangM.T. WuC.H. TaiC.J. ShiY.C. ChangC.C. ChangY.J. KuoL.J. WeiP.L. ChenR.J. ChiouH.Y. Contrast-enhanced ultrasound and computed tomography assessment of hepatocellular carcinoma after transcatheter arterial chemo-embolization: A systematic review.J. Gastrointestin. Liver Dis.201625449950710.15403/jgld.2014.1121.254.tai27981306
    [Google Scholar]
  21. LiuG-J. XuH-X. LuM-D. XieX-Y. XuZ-F. ZhengY-L. LiangJ-Y. Correlation between enhancement pattern of hepatocellular carcinoma on real-time contrast-enhanced ultrasound and tumour cellular differentiation on histopathology.Br. J. Radiol.20078095332133010.1259/bjr/5480500217005515
    [Google Scholar]
  22. FengY. QinX.C. LuoY. LiY.Z. ZhouX. Efficacy of contrast-enhanced ultrasound washout rate in predicting hepatocellular carcinoma differentiation.Ultrasound Med. Biol.20154161553156010.1016/j.ultrasmedbio.2015.01.02625747937
    [Google Scholar]
  23. DietrichC. AverkiouM. CorreasJ.M. LassauN. LeenE. PiscagliaF. An EFSUMB introduction into dynamic contrast-enhanced ultrasound (DCE-US) for quantification of tumour perfusion.Ultraschall Med.201233434435110.1055/s‑0032‑131302622843433
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056291428240523060933
Loading
/content/journals/cmir/10.2174/0115734056291428240523060933
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test