Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Early disease detection is emphasized within ophthalmology now more than ever, and as a result, clinicians and innovators turn to deep learning to expedite accurate diagnosis and mitigate treatment delay. Efforts concentrate on the creation of deep learning systems that analyze clinical image data to detect disease-specific features with maximum sensitivity. Moreover, these systems hold promise of early accurate diagnosis and treatment of patients with common progressive diseases. DenseNet, ResNet, and VGG-16 are among a few of the deep learning Convolutional Neural Network (CNN) algorithms that have been introduced and are being investigated for potential application within ophthalmology.

Methods

In this study, the authors sought to create and evaluate a novel ensembled deep learning CNN model that analyzes a dataset of shuffled retinal color fundus images (RCFIs) from eyes with various ocular disease features (cataract, glaucoma, diabetic retinopathy). Our aim was to determine (1) the relative performance of our finalized model in classifying RCFIs according to disease and (2) the diagnostic potential of the finalized model to serve as a screening test for specific diseases (cataract, glaucoma, diabetic retinopathy) upon presentation of RCFIs with diverse disease manifestations.

Results

We found adding convolutional layers to an existing VGG-16 model, which was named as a proposed model in this article that, resulted in significantly increased performance with 98% accuracy (p<0.05), including good diagnostic potential for binary disease detection in cataract, glaucoma, diabetic retinopathy.

Conclusion

The proposed model was found to be suitable and accurate for a decision support system in Ophthalmology Clinical Framework.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056286918240419100058
2024-01-01
2025-05-12
The full text of this item is not currently available.

References

  1. RussellS.J. NorvigP. Artificial intelligence is a modern approach. Wikimedia Foundation, Inc.Prentice HallLondon20101136
    [Google Scholar]
  2. YuK.H. BeamA.L. KohaneI.S. Artificial intelligence in healthcare.Nat. Biomed. Eng.201821071973110.1038/s41551‑018‑0305‑z31015651
    [Google Scholar]
  3. JiangF. JiangY. ZhiH. DongY. LiH. MaS. WangY. DongQ. ShenH. WangY. Artificial intelligence in healthcare: Past, present and future.Stroke Vasc. Neurol.20172423024310.1136/svn‑2017‑00010129507784
    [Google Scholar]
  4. RajpurkarP. ChenE. BanerjeeO. TopolE.J. AI in health and medicine.Nat. Med.2022281313810.1038/s41591‑021‑01614‑035058619
    [Google Scholar]
  5. BogunovicH. MontuoroA. BaratsitsM. KarantonisM.G. WaldsteinS.M. SchlanitzF. ErfurthS.U. Machine learning of the progression of intermediate age-related macular degeneration based on oct imaging.Invest. Ophthalmol. Vis. Sci.2017586BIO141BIO15010.1167/iovs.17‑2178928658477
    [Google Scholar]
  6. TingD.S.W. PasqualeL.R. PengL. Artificial intelligence and deep learning in ophthalmology.Br. J. Ophthalmol.2019103216717530361278
    [Google Scholar]
  7. TingD.S.W. CheungC.Y.L. LimG. TanG.S.W. QuangN.D. GanA. HamzahH. FrancoG.R. YeoS.I.Y. LeeS.Y. WongE.Y.M. SabanayagamC. BaskaranM. IbrahimF. TanN.C. FinkelsteinE.A. LamoureuxE.L. WongI.Y. BresslerN.M. SivaprasadS. VarmaR. JonasJ.B. HeM.G. ChengC.Y. CheungG.C.M. AungT. HsuW. LeeM.L. WongT.Y. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes.JAMA2017318222211222310.1001/jama.2017.1815229234807
    [Google Scholar]
  8. DavsonHugh Human Eye AnatomyEncyclopedia Britannica2024Available from: https://www.britannica.com/science/human-eye (Accessed on: 23 March 2024)
    [Google Scholar]
  9. LuoX. LiJ. ChenM. YangX. LiX. Ophthalmic disease detection via deep learning with a novel mixture loss function.IEEE J. Biomed. Health Inform.20212593332333910.1109/JBHI.2021.308360534033552
    [Google Scholar]
  10. EllahhamS. Artificial intelligence: The future for diabetes care.Am. J. Med.2020133889590010.1016/j.amjmed.2020.03.03332325045
    [Google Scholar]
  11. WHOWorld health organization.Available from: https://www.who.int/ 2024
  12. CDCHealth and economic benefits of diabetes interventions.National Center Chronic Disease Prev. Health Prom.Available from: https://www.cdc.gov/chronicdisease/programs-impact/pop/diabetes.htm 2022
    [Google Scholar]
  13. GaoJ. YangY. LinP. ParkD.S. Computer vision in healthcare applications.J. Healthc. Eng.201820181410.1155/2018/515702029686826
    [Google Scholar]
  14. KayaB. ÖnalM. A CNN transfer learning‐based approach for segmentation and classification of brain stroke from noncontrast CT images.Int. J. Imaging Syst. Technol.20233341335135210.1002/ima.22864
    [Google Scholar]
  15. SinghD. KumarV. Vaishali KaurM. Classification of COVID-19 patients from chest CT images using multi-objective differential evolution–based convolutional neural networks.Eur. J. Clin. Microbiol. Infect. Dis.20203971379138910.1007/s10096‑020‑03901‑z32337662
    [Google Scholar]
  16. ShethD. GigerM.L. Artificial intelligence in the interpretation of breast cancer on MRI.J. Magn. Reson. Imaging20205151310132410.1002/jmri.2687831343790
    [Google Scholar]
  17. HonavarS. Artificial intelligence in ophthalmology - Machines think!Indian J. Ophthalmol.20227041075107910.4103/ijo.IJO_644_2235325987
    [Google Scholar]
  18. LeongY.Y. VasseneixC. FinkelsteinM.T. MileaD. NajjarR.P. Artificial intelligence meets neuro-ophthalmology.Asia Pac. J. Ophthalmol.202211211112510.1097/APO.000000000000051235533331
    [Google Scholar]
  19. LeeC.S. TyringA.J. DeruyterN.P. WuY. RokemA. LeeA.Y. Deep-learning based, automated segmentation of macular edema in optical coherence tomography.Biomed. Opt. Express2017873440344810.1364/BOE.8.00344028717579
    [Google Scholar]
  20. GrzybowskiA. Artificial intelligence in ophthalmology: Promises, hazards and challenges.Artificial Intelligence in Ophthalmology.ChamSpringer International Publishing202111610.1007/978‑3‑030‑78601‑4_1
    [Google Scholar]
  21. AbbasQ. Glaucoma-deep: Detection of glaucoma eye disease on retinal fundus images using deep learning.Int. J. Adv. Comput. Sci. Appl.201786414510.14569/IJACSA.2017.080606
    [Google Scholar]
  22. AbràmoffM.D. FolkJ.C. HanD.P. WalkerJ.D. WilliamsD.F. RussellS.R. MassinP. CochenerB. GainP. TangL. LamardM. MogaD.C. QuellecG. NiemeijerM. Automated analysis of retinal images for detection of referable diabetic retinopathy.JAMA Ophthalmol.2013131335135710.1001/jamaophthalmol.2013.174323494039
    [Google Scholar]
  23. KöseC. ŞevikU. İkibaşC. ErdölH. Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images.Comput. Methods Programs Biomed.2012107227429310.1016/j.cmpb.2011.06.00721757250
    [Google Scholar]
  24. GulshanV. PengL. CoramM. StumpeM.C. WuD. NarayanaswamyA. VenugopalanS. WidnerK. MadamsT. CuadrosJ. KimR. RamanR. NelsonP.C. MegaJ.L. WebsterD.R. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs.JAMA2016316222402241010.1001/jama.2016.1721627898976
    [Google Scholar]
  25. SarkiR. AhmedK. WangH. ZhangY. Automated detection of mild and multi-class diabetic eye diseases using deep learning.Health Inf. Sci. Syst.2020813210.1007/s13755‑020‑00125‑533088488
    [Google Scholar]
  26. MileaD. NajjarR.P. JiangZ. TingD. VasseneixC. XuX. FardA.M. FonsecaP. VanikietiK. LagrèzeW.A. La MorgiaC. CheungC.Y. HamannS. ChiquetC. SandaN. YangH. MejicoL.J. RougierM.B. KhoR. TranT.H.C. SinghalS. GohierP. VignalC.C. ChengC.Y. JonasJ.B. ManY.W.P. FraserC.L. ChenJ.J. AmbikaS. MillerN.R. LiuY. NewmanN.J. WongT.Y. BiousseV. Artificial intelligence to detect papilledema from ocular fundus photographs.N. Engl. J. Med.2020382181687169510.1056/NEJMoa191713032286748
    [Google Scholar]
  27. NazirT. IrtazaA. JavedA. MalikH. HussainD. NaqviR.A. Retinal image analysis for diabetes-based eye disease detection using deep learning.Appl. Sci.20201018618510.3390/app10186185
    [Google Scholar]
  28. QuellecG. CharrièreK. BoudiY. CochenerB. LamardM. Deep image mining for diabetic retinopathy screening.Med. Image Anal.20173917819310.1016/j.media.2017.04.01228511066
    [Google Scholar]
  29. BhaskaranandM. RamachandraC. BhatS. CuadrosJ. NittalaM.G. SaddaS. SolankiK. Automated diabetic retinopathy screening and monitoring using retinal fundus image analysis.J. Diabetes Sci. Technol.201610225426110.1177/193229681662854626888972
    [Google Scholar]
  30. GargeyaR. LengT. Automated identification of diabetic retinopathy using deep learning.Ophthalmology2017124796296910.1016/j.ophtha.2017.02.00828359545
    [Google Scholar]
  31. DoddiG.V. Available from: https://www.kaggle.com/datasets/gunavenkatdoddi/eye-diseases-classification 2022
/content/journals/cmir/10.2174/0115734056286918240419100058
Loading
/content/journals/cmir/10.2174/0115734056286918240419100058
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Algorithms; Artificial intelligence; Deep learning; Detection; Diagnosis; Ocular disease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test