Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

To investigate the optimal B value of renal amide proton transfer-weighted (APTw) images and the reproducibility of this value, and to explore the utility of APT imaging of renal masses and kidney tissues.

Methods

APTw images with different B values were repeatedly recorded in 15 healthy volunteers to determine the optimal value. Two 4-point Likert scales (poor [1] to excellent [4]) were used to evaluate contour clarity and artifacts in masses and normal tissues. The APTw values of masses and normal tissues were then compared in evaluable images (contour clarity score > 1, artifacts score > 1). The APTw of malignant masses, normal tissues, and benign masses were calculated and compared with the Mann-Whitney U test.

Results

The optimal scanning parameter of B was 2 μT, and the APTw images had good agreement in the volunteers. Our study of APTw imaging examined 70 renal masses (13 benign, 57 malignant) and 49 normal kidneys (including those from 15 healthy volunteers). The mean APTw value for renal malignant masses (2.28(1.55)) was different from that for benign masses (0.91(1.30)) (<0.001), renal cortex (1.30 (1.25)) (<0.001), renal medulla (1.64 (1.33)) (<0.05), and renal pelvis (5.49 (2.65)) (<0.001).

Conclusion

These preliminary data demonstrate that APTw imaging of the kidneys has potential use as an imaging biomarker for the differentiation of normal tissues, malignant masses, and benign masses.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056284650240325044027
2024-01-01
2025-06-01
The full text of this item is not currently available.

References

  1. PatelH.D. JohnsonM.H. PierorazioP.M. SozioS.M. SharmaR. IyohaE. BassE.B. AllafM.E. Diagnostic accuracy and risks of biopsy in the diagnosis of a renal mass suspicious for localized renal cell carcinoma: systematic review of the literature.J. Urol.201619551340134710.1016/j.juro.2015.11.02926901507
    [Google Scholar]
  2. LaothamatasI. Al MubarakH. ReddyA. WaxR. BadaniK. TaouliB. BaneO. LewisS. Multiparametric MRI of solid renal masses: Principles and applications of advanced quantitative and functional methods for tumor diagnosis and characterization.J. Magn. Reson. Imaging202358234235910.1002/jmri.2871837052601
    [Google Scholar]
  3. MetinM. AydınH. KaraoğlanoğluM. Renal cell carcinoma or oncocytoma? The contribution of diffusion-weighted magnetic resonance imaging to the differential diagnosis of renal masses.Medicina202258222110.3390/medicina5802022135208545
    [Google Scholar]
  4. OgawaY. MoritaS. TakagiT. YoshidaK. TanabeK. NagashimaY. NishinaY. SakaiS. Early dark cortical band sign on CT for differentiating clear cell renal cell carcinoma from fat poor angiomyolipoma and detecting peritumoral pseudocapsule.Eur. Radiol.20213185990599710.1007/s00330‑021‑07717‑z33559699
    [Google Scholar]
  5. LiX.L. ShiL.X. DuQ.C. WangW. ShaoL.W. WangY.W. Magnetic resonance imaging features of minimal-fat angiomyolipoma and causes of preoperative misdiagnosis.World J. Clin. Cases20208122502250910.12998/wjcc.v8.i12.250232607327
    [Google Scholar]
  6. ZhouJ. PayenJ.F. WilsonD.A. TraystmanR.J. van ZijlP.C.M. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI.Nat. Med.2003981085109010.1038/nm90712872167
    [Google Scholar]
  7. DengX. LiuM. ZhouQ. ZhaoX. LiM. ZhangJ. ShenH. LanX. ZhangX. ZhangJ. Predicting treatment response to concurrent chemoradiotherapy in squamous cell carcinoma of the cervix using amide proton transfer imaging and intravoxel incoherent motion imaging.Diagn. Interv. Imaging20221031261862410.1016/j.diii.2022.09.00136151042
    [Google Scholar]
  8. YangL. WangL. TanY. DanH. XianP. ZhangY. TanY. LinM. ZhangJ. Amide proton transfer-weighted mri combined with serum prostate-specific antigen levels for differentiating malignant prostate lesions from benign prostate lesions: A retrospective cohort study.Cancer Imaging2023231310.1186/s40644‑022‑00515‑w36611191
    [Google Scholar]
  9. ParkJ.E. KimH.S. ParkS.Y. JungS.C. KimJ.H. HeoH.Y. Identification of early response to anti-angiogenic therapy in recurrent glioblastoma: Amide proton transfer–weighted and perfusion-weighted MRI compared with diffusion-weighted MRI.Radiology2020295239740610.1148/radiol.202019137632154775
    [Google Scholar]
  10. NishieA. AsayamaY. IshigamiK. UshijimaY. TakayamaY. OkamotoD. FujitaN. TsurumaruD. TogaoO. SagiyamaK. ManabeT. OkiE. KuboY. HidaT. Hirahashi-FujiwaraM. KeuppJ. HondaH. Amide proton transfer imaging to predict tumor response to neoadjuvant chemotherapy in locally advanced rectal cancer.J. Gastroenterol. Hepatol.201934114014610.1111/jgh.1431529900583
    [Google Scholar]
  11. LiY. LinC.Y. QiY.F. WangX.Q. ChenB. ZhouH.L. RenJ. YangJ.J. XiangY. HeY.L. XueH.D. JinZ.Y. Non-invasive differentiation of endometrial adenocarcinoma from benign lesions in the uterus by utilization of amide proton transfer-weighted MRI.Mol. Imaging Biol.202123344645510.1007/s11307‑020‑01565‑x33185840
    [Google Scholar]
  12. ChenW. LiL. YanZ. HuS. FengJ. LiuG. LiuB. LiuX. Three-dimension amide proton transfer MRI of rectal adenocarcinoma: correlation with pathologic prognostic factors and comparison with diffusion kurtosis imaging.Eur. Radiol.20213153286329610.1007/s00330‑020‑07397‑133125558
    [Google Scholar]
  13. LiJ. LinL. GaoX. LiS. ChengJ. Amide proton transfer weighted and intravoxel incoherent motion imaging in evaluation of prognostic factors for rectal adenocarcinoma.Front. Oncol.20221178354410.3389/fonc.2021.78354435047400
    [Google Scholar]
  14. JuY. LiuA. WangY. ChenL. WangN. BuX. DuC. JiangH. WangJ. LinL. Amide proton transfer magnetic resonance imaging to evaluate renal impairment in patients with chronic kidney disease.Magn. Reson. Imaging20228717718210.1016/j.mri.2021.11.01534863880
    [Google Scholar]
  15. HeY.L. LiY. LinC.Y. QiY.F. WangX. ZhouH.L. YangJ.J. XiangY. XueH.D. JinZ.Y. Three‐dimensional turbo‐spin‐echo amide proton transfer‐weighted mri for cervical cancer: A preliminary study.J. Magn. Reson. Imaging20195041318132510.1002/jmri.2671030859696
    [Google Scholar]
  16. JuY. WangY. LuoR.N. WangN. WangJ.Z. LinL.J. SongQ.W. LiuA.L. Evaluation of renal function in chronic kidney disease (CKD) by mDIXON-quant and amide proton transfer weighted (APTw) imaging.Magn. Reson. Imaging202310310210810.1016/j.mri.2023.07.00537451519
    [Google Scholar]
  17. SeoN. JeongH.K. ChoiJ.Y. ParkM.S. KimM.J. ChungY.E. Liver MRI with amide proton transfer imaging: feasibility and accuracy for the characterization of focal liver lesions.Eur. Radiol.202131122223110.1007/s00330‑020‑07122‑y32785767
    [Google Scholar]
  18. WangH.J. CaiQ. HuangY.P. LiM.Q. WenZ.H. LinY.Y. OuyangL.Y. QianL. GuoY. Amide proton transfer-weighted MRI in predicting histologic grade of bladder cancer.Radiology20223051E5910.1148/radiol.22901736154289
    [Google Scholar]
  19. ChenY. WangX. SuT. XuZ. WangY. ZhangZ. XueH. ZhuoZ. ZhuY. JinZ. ZhangT. Feasibility evaluation of amide proton transfer-weighted imaging in the parotid glands: A strategy to recognize artifacts and measure APT value.Quant. Imaging Med. Surg.20211162279229110.21037/qims‑20‑67534079701
    [Google Scholar]
  20. FengL. BenkertT. BlockK.T. SodicksonD.K. OtazoR. ChandaranaH. Compressed sensing for body MRI.J. Magn. Reson. Imaging201745496698710.1002/jmri.2554727981664
    [Google Scholar]
  21. TakayamaY. NishieA. TogaoO. AsayamaY. IshigamiK. UshijimaY. OkamotoD. FujitaN. SonodaK. HidaT. OhishiY. KeuppJ. HondaH. Amide proton transfer MR imaging of endometrioid endometrial adenocarcinoma: Association with histologic grade.Radiology2018286390991710.1148/radiol.201717034929083987
    [Google Scholar]
  22. ChenS.Z. YuanJ. DengM. WeiJ. ZhouJ. WángY.X.J. Chemical exchange saturation transfer (CEST) MR technique for in-vivo liver imaging at 3.0 tesla.Eur. Radiol.20162661792180010.1007/s00330‑015‑3972‑026334509
    [Google Scholar]
  23. JiangS. ZouT. EberhartC.G. VillalobosM.A.V. HeoH.Y. ZhangY. WangY. WangX. YuH. DuY. van ZijlP.C.M. WenZ. ZhouJ. Predicting IDH mutation status in grade II gliomas using amide proton transfer‐weighted (APTw) MRI.Magn. Reson. Med.20177831100110910.1002/mrm.2682028714279
    [Google Scholar]
  24. PaechD. ZaissM. MeissnerJ.E. WindschuhJ. WiestlerB. BachertP. NeumannJ.O. KickingerederP. SchlemmerH.P. WickW. NagelA.M. HeilandS. LaddM.E. BendszusM. RadbruchA. Nuclear overhauser enhancement mediated chemical exchange saturation transfer imaging at 7 Tesla in glioblastoma patients.PLoS One201498e10418110.1371/journal.pone.010418125111650
    [Google Scholar]
  25. ZhouJ. HeoH.Y. KnutssonL. van ZijlP.C.M. JiangS. APT‐weighted MRI: Techniques, current neuro applications, and challenging issues.J. Magn. Reson. Imaging201950234736410.1002/jmri.2664530663162
    [Google Scholar]
  26. KimJ. WuY. GuoY. ZhengH. SunP.Z. A review of optimization and quantification techniques for chemical exchange saturation transfer MRI toward sensitive in vivo imaging.Contrast Media Mol. Imaging201510316317810.1002/cmmi.162825641791
    [Google Scholar]
  27. LeeJ.B. ParkJ.E. JungS.C. JoY. KimD. KimH.S. ChoiC.G. KimS.J. KangD.W. Repeatability of amide proton transfer–weighted signals in the brain according to clinical condition and anatomical location.Eur. Radiol.202030134635610.1007/s00330‑019‑06285‑731338651
    [Google Scholar]
  28. LawB.K.H. KingA.D. AiQ.Y. PoonD.M.C. ChenW. BhatiaK.S. AhujaA.T. MaB.B. Ka-Wai YeungD. Fai MoF.K. WangY.X. YuanJ. Head and neck tumors: Amide proton transfer MRI.Radiology2018288378279010.1148/radiol.201817152829893646
    [Google Scholar]
  29. ZhouJ. HongX. ZhaoX. GaoJ.H. YuanJ. APT‐weighted and NOE‐weighted image contrasts in glioma with different RF saturation powers based on magnetization transfer ratio asymmetry analyses.Magn. Reson. Med.201370232032710.1002/mrm.2478423661598
    [Google Scholar]
  30. HeoH.Y. ZhangY. LeeD.H. JiangS. ZhaoX. ZhouJ. Accelerating chemical exchange saturation transfer (CEST) MRI by combining compressed sensing and sensitivity encoding techniques.Magn. Reson. Med.201777277978610.1002/mrm.2614126888295
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056284650240325044027
Loading
/content/journals/cmir/10.2174/0115734056284650240325044027
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test