Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Skeletal-related events due to bone metastases can be prevented by early diagnosis using radiological or nuclear imaging techniques. Nuclear medicine techniques such as Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been used for diagnostic imaging of bone for decades. Although it is widely recognized that conventional diagnostic imaging techniques such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) have high sensitivity, low cost and wide availability, the specificity of both techniques is rather low compared to nuclear medicine techniques. Nuclear medicine techniques, on the other hand, have improved specificity when introduced as a hybrid imaging modality, as they can combine physiological and anatomical information. Two main radiopharmaceuticals are used in nuclear medicine: [99mTc]-methyl diphosphonate ([99mTc]Tc-MDP) from the generator and [18F]sodium fluoride ([18F]NaF) from the cyclotron. The former is used in SPECT imaging, while the latter is used in PET imaging. However, recent studies show that the role of radiolabeled bisphosphonates with gallium-68 (68Ga) and fluorine-18 (18F) may have a potential role in the future. This review, therefore, presents and discusses the brief method for producing current and future potential radiopharmaceuticals for bone metastases.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056270935231113035620
2024-01-01
2025-07-05
The full text of this item is not currently available.

References

  1. PüsküllüoğluM. ZygulskaA.L. TomaszewskaI.M. OchenduszkoS. KonopkaK. TomaszewskiK.A. Evaluation of health-related quality of life and its main influencing factors in a Polish population of patients with bone metastases.Curr. Probl. Cancer2016405-618319710.1016/j.currproblcancer.2016.09.00827855962
    [Google Scholar]
  2. von MoosR. BodyJ.J. RiderA. de CourcyJ. BhowmikD. GattaF. HechmatiG. QianY. Bone-targeted agent treatment patterns and the impact of bone metastases on patients with advanced breast cancer in real-world practice in six European countries.J. Bone Oncol.2018111910.1016/j.jbo.2017.11.00429892519
    [Google Scholar]
  3. LinY. XuJ. LanH. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications.J. Hematol. Oncol.20191217610.1186/s13045‑019‑0760‑331300030
    [Google Scholar]
  4. NguyenD.X. BosP.D. MassaguéJ. Metastasis: From dissemination to organ-specific colonization.Nat. Rev. Cancer20099427428410.1038/nrc262219308067
    [Google Scholar]
  5. BudcziesJ. von WinterfeldM. KlauschenF. BockmayrM. LennerzJ.K. DenkertC. WolfT. WarthA. DietelM. AnagnostopoulosI. WeichertW. WittschieberD. StenzingerA. The landscape of metastatic progression patterns across major human cancers.Oncotarget20156157058310.18632/oncotarget.267725402435
    [Google Scholar]
  6. ScimecaM. UrbanoN. RitaB. MapelliS.N. CatapanoC.V. CarboneG.M. CiuffaS. TavolozzaM. SchillaciO. MaurielloA. BonannoE. Prostate Osteoblast-Like Cells: A reliable prognostic marker of bone metastasis in prostate cancer patients.Contrast Media Mol. Imaging2018201811210.1155/2018/984096230627063
    [Google Scholar]
  7. JinJ.K. DayyaniF. GallickG.E. Steps in prostate cancer progression that lead to bone metastasis.Int. J. Cancer2011128112545256110.1002/ijc.2602421365645
    [Google Scholar]
  8. HarriesM. TaylorA. HolmbergL. AgbajeO. GarmoH. KabilanS. PurushothamA. Incidence of bone metastases and survival after a diagnosis of bone metastases in breast cancer patients.Cancer Epidemiol.201438442743410.1016/j.canep.2014.05.00524923857
    [Google Scholar]
  9. LutzS. BalboniT. JonesJ. LoS. PetitJ. RichS.E. WongR. HahnC. Palliative radiation therapy for bone metastases: Update of an ASTRO Evidence-Based Guideline.Pract. Radiat. Oncol.20177141210.1016/j.prro.2016.08.00127663933
    [Google Scholar]
  10. FrostC.Ø. HansenR.R. HeegaardA.M. Bone pain: Current and future treatments.Curr. Opin. Pharmacol.201628313710.1016/j.coph.2016.02.00726940053
    [Google Scholar]
  11. Zaporowska-StachowiakI. ŁuczakJ. HoffmannK. StachowiakK. BrylW. SopataM. Managing metastatic bone pain: New perspectives, different solutions.Biomed. Pharmacother.2017931277128410.1016/j.biopha.2017.07.02328747002
    [Google Scholar]
  12. CostelloeC.M. ChuangH.H. MadewellJ.E. FDG PET for the detection of bone metastases: Sensitivity, specificity and comparison with other imaging modalities.PET Clin.20105328129510.1016/j.cpet.2010.04.00127157834
    [Google Scholar]
  13. IjangI. IbrahimZ. YaacobB. The current utilization and future demand of radiopharmaceutical and radioisotopes in malaysia.In: NTC 2013: Nuclear Technical Convention 2013Malaysia2013
    [Google Scholar]
  14. FadzilM.F.A. HamidS.S.A. JanibS.N.M. KasbollahA. WafaS.A.F. A survey on the usage and demand of medical radioisotope & radiopharmaceuticals in Malaysia.J. Nucl. Relat. Technol.201512
    [Google Scholar]
  15. AzadG.K. CookG.J. Multi-technique imaging of bone metastases: Spotlight on PET-CT.Clin. Radiol.201671762063110.1016/j.crad.2016.01.02626997430
    [Google Scholar]
  16. MaheshM. MadsenM. Addressing Technetium-99m Shortage.J. Am. Coll. Radiol.201714568168310.1016/j.jacr.2017.02.00728381357
    [Google Scholar]
  17. ZhouJ. GouZ. WuR. YuanY. YuG. ZhaoY. Comparison of PSMA-PET/CT, choline-PET/CT, NaF-PET/CT, MRI, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a systematic review and meta-analysis.Skeletal Radiol.201948121915192410.1007/s00256‑019‑03230‑z31127357
    [Google Scholar]
  18. ZhaoG. JiB. Head-To-Head Comparison of 68 Ga-PSMA-11 PET/CT and 99m Tc-MDP bone scintigraphy for the detection of bone metastases in patients with prostate cancer: A meta-analysis.AJR Am. J. Roentgenol.2022219338639510.2214/AJR.21.2732335441529
    [Google Scholar]
  19. AshharZ. Ahmad FadzilM.F. OthmanM.F. YusofN.A. Abdul OnnyM.A. Mat AilN. Abd RahmanS.F. Cyclotron production of gallium-68 radiopharmaceuticals using the 68Zn(p,n)68Ga reaction and their regulatory aspects.2023
    [Google Scholar]
  20. WysowskiD.K. GreeneP. Trends in osteoporosis treatment with oral and intravenous bisphosphonates in the United States, 2002–2012.Bone201357242342810.1016/j.bone.2013.09.00824063946
    [Google Scholar]
  21. ZeglisB.M. LewisJ.S. A practical guide to the construction of radiometallated bioconjugates for positron emission tomography.Dalton Trans.201140236168619510.1039/c0dt01595d21442098
    [Google Scholar]
  22. RichardsP. TuckerW.D. SrivastavaS.C. Technetium-99m: An historical perspective.Int. J. Appl. Radiat. Isot.1982331079379910.1016/0020‑708X(82)90120‑X6759417
    [Google Scholar]
  23. CitrinD.L. GreigW.R. CalderJ.F. BessentR.G. TuohyJ.B. BlumgartL.H. Preliminary experience of bone scanning with 99mTc-labelled polyphosphate in malignant disease.Br. J. Surg.2005611737510.1002/bjs.18006101174359623
    [Google Scholar]
  24. RuddT.G. AllenD.R. HartnettD.E. Tc-99m methylene diphosphonate versus tc-99m pyrophosphate: Biologic and clinical comparison.J. Nucl. Med.1977872
    [Google Scholar]
  25. StokelyE.M. ParkeyR.W. BonteF.J. GrahamK.D. StoneM.J. WillersonJ.T. Gated blood pool imaging following 99mTc stannous pyrophosphate imaging.Radiology1976120243343410.1148/120.2.433935500
    [Google Scholar]
  26. RighettiA. O’RourkeR.A. SchelbertH. HenningH. HardarsonT. DailyP.O. AshburnW. RossJ.Jr Usefulness of preoperative and postoperative Tc-99m (Sn)-pyrophosphate scans in patients with ischemic and valvular heart disease.Am. J. Cardiol.1977391434910.1016/S0002‑9149(77)80009‑X299792
    [Google Scholar]
  27. Lo PrestiS. HorvathS.A. MihosC.G. RajadhyakshaC. McCloskeyV. SantanaO. Transthyretin cardiac amyloidosis as diagnosed by 99mTc-PYP scanning in patients with acute heart failure and preserved ejection fraction.Crit. Pathw. Cardiol.201918419519910.1097/HPC.000000000000018331725511
    [Google Scholar]
  28. AksuB. Durmus-AltunG. UstunF. TorunN. KanterM. UmitH. SutN. A new imaging modality in detection of caustic oesophageal injury: Technetium-99m pyrophosphate scintigraphy.Int. J. Pediatr. Otorhinolaryngol.200973340941510.1016/j.ijporl.2008.11.00819124162
    [Google Scholar]
  29. PontoJ.A. GrahamM.M. Technetium Tc-99m pyrophosphate for cerebrospinal fluid leaks: Radiopharmaceutical considerations.J. Am. Pharm. Assoc.2014541454810.1331/JAPhA.2014.1305924257695
    [Google Scholar]
  30. SubramanianG. McAfeeJ.G. BlairR.J. KallfelzF.A. ThomasF.D. Technetium-99mMethylene diphosphonate—a superior agent for skeletal imaging: Comparison with other technetium complexes.J. Nucl. Med.1975744
    [Google Scholar]
  31. FelixD.D. GoreJ.C. YankeelovT.E. PetersonT.E. BarnesS. WhisenantJ. WeisJ. ShoukouhiS. VirostkoJ. NickelsM. McIntyreJ.O. SandersM. AbramsonV. TantawyM.N. Detection of breast cancer microcalcification using 99mTc-MDP SPECT or Osteosense 750EX FMT imaging.Nucl. Med. Biol.201542326927310.1016/j.nucmedbio.2014.11.01025533764
    [Google Scholar]
  32. RushinekH. TabibR. FleissigY. KleinM. TshoriS. Evaluation of three analysis methods for 99mTc MDP SPECT scintigraphy in the diagnosis of unilateral condylar hyperplasia.Int. J. Oral Maxillofac. Surg.201645121607161310.1016/j.ijom.2016.07.00227475465
    [Google Scholar]
  33. SaeedS. HaqS. SohaibM. Nawaz KhanA. Utility of Tc-99m MDP bone SPECT in evaluation of osseous involvement in craniofacial malignancies.J. Craniomaxillofac. Surg.201745111815181910.1016/j.jcms.2017.08.01528935488
    [Google Scholar]
  34. ColeE. StewartM. LittichR. HoareauR. ScottP. Radiosyntheses using fluorine-18: The art and science of late stage fluorination.Curr. Top. Med. Chem.201414787590010.2174/156802661466614020220503524484425
    [Google Scholar]
  35. BlauM. NaglerW. BenderM.A. Fluorine-18: A new isotope for bone scanning.J. Nucl. Med.1962333233413869926
    [Google Scholar]
  36. LangstegerW. RezaeeA. PirichC. BeheshtiM. 18F-NaF-PET/CT and 99mTc-MDP bone scintigraphy in the detection of bone metastases in prostate cancer.Semin. Nucl. Med.201646649150110.1053/j.semnuclmed.2016.07.00327825429
    [Google Scholar]
  37. ClarkJ.C. SilvesterD.J. A cyclotron method for the production of fluorine-18.Int. J. Appl. Radiat. Isot.196617315115410.1016/0020‑708X(66)90039‑15916844
    [Google Scholar]
  38. HockleyB.G. ScottP.J.H. An automated method for preparation of [(18)F]sodium fluoride for injection, USP to address the technetium-99m isotope shortage.Ind. Med.201068111711919762249
    [Google Scholar]
  39. LasneM-C. PerrioC. RoudenJ. BarréL. RoedaD. DolleF. CrouzelC. Chemistry of β +-Emitting Compounds Based on Fluorine-18.Contrast Agent II.Springer Berlin Heidelberg200210.1007/3‑540‑46009‑8_7
    [Google Scholar]
  40. KulshresthaR.K. VinjamuriS. EnglandA. NightingaleJ. HoggP. The role of 18Fsodium fluoride PET/CT bone scans in the diagnosis of metastatic bone disease from breast and prostate cancer.J. Nucl. Med. Technol.201644421722210.2967/jnmt.116.17685927634981
    [Google Scholar]
  41. LopezR. GantetP. SalabertA.S. JulianA. HitzelA. Herbault-BarresB. FontanC. AlshehriS. PayouxP. Prospective comparison of 18 F-NaF PET/CT versus 18 F-FDG PET/CT imaging in mandibular extension of head and neck squamous cell carcinoma with dedicated analysis software and validation with surgical specimen. A preliminary study.J. Craniomaxillofac. Surg.20174591486149210.1016/j.jcms.2017.06.02528764952
    [Google Scholar]
  42. ArazM. ArasG. KüçükÖ.N. The role of 18F–NaF PET/CT in metastatic bone disease.J. Bone Oncol.201543929710.1016/j.jbo.2015.08.00226587375
    [Google Scholar]
  43. BastawrousS. BhargavaP. BehniaF. DjangD.S.W. HaseleyD.R. Newer PET application with an old tracer: role of 18F-NaF skeletal PET/CT in oncologic practice.Radiographics20143451295131610.1148/rg.34513006125208282
    [Google Scholar]
  44. HassanH. OthmanM.F. Abdul RazakH.R. ZakariaZ.A. Ahmad SaadF.F. OsmanM.A. YiL.H. AshharZ. IdrisJ. Abdul HamidM.H. SafeeZ.M. Preparation, Optimisation, and In Vitro Evaluation of.AlF-NOTA-Pamidronic Acid for Bone Imaging PET18F2022
    [Google Scholar]
  45. HassanH. Razak*, M.F.O. and H.R.A.: 18F-labeled bisphosphonate as an alternative candidate to the gold standard [18F]sodium fluoride ([18F]NaF) for PET bone imaging.Available from: http://www.eurekaselect.com/node/191436/article 2021
  46. SilveiraM.B. SoaresM.A. ValenteE.S. SoaresS. FerreiraA.V. GouvêaR. BatistaJ. Synthesis , quality control and dosimetry of the for development of nuclear technology.CDTN201046
    [Google Scholar]
  47. KubíčekV. RudovskýJ. KotekJ. HermannP. Vander ElstL. MullerR.N. KolarZ.I. WolterbeekH.T. PetersJ.A. LukešI. A bisphosphonate monoamide analogue of DOTA: A potential agent for bone targeting.J. Am. Chem. Soc.200512747164771648510.1021/ja054905u16305234
    [Google Scholar]
  48. MeckelM. FellnerM. ThiemeN. BergmannR. KubicekV. RöschF. In vivo comparison of DOTA based 68Ga-labelled bisphosphonates for bone imaging in non-tumour models.Nucl. Med. Biol.201340682383010.1016/j.nucmedbio.2013.04.01223915801
    [Google Scholar]
  49. WuZ. ZhaZ. ChoiS.R. PlösslK. ZhuL. KungH.F. New 68Ga-PhenA bisphosphonates as potential bone imaging agents.Nucl. Med. Biol.201643636037110.1016/j.nucmedbio.2016.03.00227260777
    [Google Scholar]
  50. FellnerM. BiesalskiB. BausbacherN. KubícekV. HermannP. RöschF. ThewsO. 68Ga-BPAMD: PET-imaging of bone metastases with a generator based positron emitter.Nucl. Med. Biol.201239799399910.1016/j.nucmedbio.2012.04.00722633217
    [Google Scholar]
  51. RodanG.A. MartinT.J. Therapeutic approaches to bone diseases.Science200028954841508151410.1126/science.289.5484.1508
    [Google Scholar]
  52. CundyT. Paget’s disease of bone.Metabolism20188051410.1016/j.metabol.2017.06.01028780255
    [Google Scholar]
  53. StapletonM. SawamotoK. Alméciga-DíazC. MackenzieW. MasonR. OriiT. TomatsuS. Development of bone targeting drugs.Int. J. Mol. Sci.2017187134510.3390/ijms1807134528644392
    [Google Scholar]
  54. PetersJ. RobertsonA. GodavitarneC. RogersB. Metabolic bone disease.Orthop. Trauma201731530631110.1016/j.mporth.2017.07.008
    [Google Scholar]
  55. DrakeM.T. ClarkeB.L. KhoslaS. Bisphosphonates: Mechanism of action and role in clinical practice.Mayo Clin. Proc.20088391032104510.4065/83.9.103218775204
    [Google Scholar]
  56. RussellR.G.G. MühlbauerR.C. BisazS. WilliamsD.A. FleischH. The influence of pyrophosphate, condensed phosphates, phosphonates and other phosphate compounds on the dissolution of hydroxyapatitein vitro and on bone resorption induced by parathyroid hormone in tissue culture and in thyroparathyroidectomised rats.Calcif. Tissue Res.19706118319610.1007/BF021961995500673
    [Google Scholar]
  57. BaroncelliG.I. BertelloniS. The use of bisphosphonates in pediatrics.Horm. Res. Paediatr.201482529030210.1159/00036588925376487
    [Google Scholar]
  58. MichaelW.R. KingW.R. WakimJ.M. Metabolism of disodium ethane-1-hydroxy-1,1-diphosphonate (disodium etidronate) in the rat, rabbit, dog and monkey.Toxicol. Appl. Pharmacol.197221450351510.1016/0041‑008X(72)90007‑54625817
    [Google Scholar]
  59. YakatanG.J. PoynorW.J. TalbertR.L. FloydB.F. SloughC.L. AmpulskiR.S. BenedictJ.J. Clodronate kinetics and bioavailability.Clin. Pharmacol. Ther.198231340241010.1038/clpt.1982.516460586
    [Google Scholar]
  60. DrakeM.T. CremersS.C.L.M. Bisphosphonate therapeutics in bone disease: The hard and soft data on osteoclast inhibition.Mol. Interv.201010314115210.1124/mi.10.3.520539033
    [Google Scholar]
  61. RodanG.A. FleischH.A. Bisphosphonates: Mechanisms of action.J. Clin. Invest.199697122692269610.1172/JCI1187228675678
    [Google Scholar]
  62. CremersS. PapapoulosS. Pharmacology of bisphosphonates.Bone2011491424910.1016/j.bone.2011.01.01421281748
    [Google Scholar]
  63. BarnettB.L. StricklandL.C. Structure of disodium dihydrogen 1-hydroxyethylidenediphosphonate tetrahydrate: A bone growth regulator.Acta Crystallogr. B19793551212121410.1107/S0567740879005938
    [Google Scholar]
  64. SelanderK.S. MönkkönenJ. KarhukorpiE.K. HärkönenP. HannuniemiR. VäänänenH.K. Characteristics of clodronate-induced apoptosis in osteoclasts and macrophages.Mol. Pharmacol.1996505112711388913344
    [Google Scholar]
  65. BreuilV. CosmanF. SteinL. HorbertW. NievesJ. ShenV. LindsayR. DempsterD.W. Human osteoclast formation and activity in vitro: Effects of alendronate.J. Bone Miner. Res.199813111721172910.1359/jbmr.1998.13.11.17219797481
    [Google Scholar]
  66. BoonekampP.M. van der Wee-PalsL.J. van Wijk-van LennepM.M. ThesingC.W. BijvoetO.L. Two modes of action of bisphosphonates on osteoclastic resorption of mineralized matrix.Bone Miner.19861127393508715
    [Google Scholar]
  67. LöwikC.W.G.M. Van Der PluijmG. Van Der Wee-PalsL.J.A. Van Treslong-De GrootH.B. BijvoetO.L.M. Migration and phenotypic transformation of osteoclast precursors into mature osteoclasts: The effect of a bisphosphonate.J. Bone Miner. Res.19883218519210.1002/jbmr.56500302103213614
    [Google Scholar]
  68. GreenJ. LiptonA. Anticancer properties of zoledronic acid.Cancer Invest.201028994495710.3109/07357907.2010.51259820879838
    [Google Scholar]
  69. ZekriJ. MansourM. KarimS.M. The anti-tumour effects of zoledronic acid.J. Bone Oncol.201431253510.1016/j.jbo.2013.12.00126909294
    [Google Scholar]
  70. Van AckerH.H. AnguilleS. WillemenY. SmitsE.L. Van TendelooV.F. Bisphosphonates for cancer treatment: Mechanisms of action and lessons from clinical trials.Pharmacol. Ther.2016158244010.1016/j.pharmthera.2015.11.00826617219
    [Google Scholar]
  71. JahnkeW. HenryC. An in vitro assay to measure targeted drug delivery to bone mineral.ChemMedChem20105577077610.1002/cmdc.20100001620209564
    [Google Scholar]
  72. EbetinoE.H. BarnettB.L. RussellR.G.G. A computational model delineates differences in hydroxyapatite binding affinities of bisphosphonates in clinical use VO - 20 RT - Conference Proceedings.In: Journal of Bone and Mineral Research2005
    [Google Scholar]
  73. KnappF.F.J. CallahanA.P. MirzadehS. BrihayeC. GuillaumeM. The development of new radionuclide generator systems for nuclear medicine applications.Progress in Radiopharmacy1992678810.1007/978‑94‑011‑2584‑0_8
    [Google Scholar]
  74. JalilianA.R. An overview on Ga-68 radiopharmaceuticals for positron emission tomography applications.Iran. J. Nucl. Med.2016241
    [Google Scholar]
  75. GreeneM.W. TuckerW.D. An improved gallium-68 cow.Int. J. Appl. Radiat. Isot.1961121-2626310.1016/0020‑708X(61)90034‑5
    [Google Scholar]
  76. YanoY. AngerH.O. A gallium-68 positron cow for medical use.J. Nucl. Med.1964548448714191416
    [Google Scholar]
  77. RoeschF. RissP.J. The renaissance of the ⁶⁸Ge/⁶⁸Ga radionuclide generator initiates new developments in ⁶⁸Ga radiopharmaceutical chemistry.Curr. Top. Med. Chem.201010161633166810.2174/15680261079317673820583984
    [Google Scholar]
  78. BreemanW.A.P. VerbruggenA.M. The 68Ge/68Ga generator has high potential, but when can we use 68Ga-labelled tracers in clinical routine?Eur. J. Nucl. Med. Mol. Imaging200734797898110.1007/s00259‑007‑0387‑417333177
    [Google Scholar]
  79. SchuhmacherJ. Maier-BorstW. A new 68Ge/68Ga radioisotope generator system for production of 68Ga in dilute HCl.Int. J. Appl. Radiat. Isot.1981321313610.1016/0020‑708X(81)90174‑5
    [Google Scholar]
  80. VelikyanI. Prospective of ⁶⁸Ga-radiopharmaceutical development.Theranostics201441478010.7150/thno.744724396515
    [Google Scholar]
  81. BreemanW.A.P. de JongM. de BloisE. BernardB.F. KonijnenbergM. KrenningE.P. Radiolabelling DOTA-peptides with 68Ga.Eur. J. Nucl. Med. Mol. Imaging200532447848510.1007/s00259‑004‑1702‑y15655678
    [Google Scholar]
  82. ZhernosekovK.P. FilosofovD. V BaumR.P. AschoffP. BihlH. RazbashA.A. JahnM. JenneweinM. RöschF. Processing of generator-produced <sup>68</sup>ga for medical application.J. Nucl. Med2007481741
    [Google Scholar]
  83. BandoliG. DolmellaA. TisatoF. PorchiaM. RefoscoF. Mononuclear six-coordinated Ga(III) complexes: A comprehensive survey.Coord. Chem. Rev.20092531-2567710.1016/j.ccr.2007.12.001
    [Google Scholar]
  84. KruperW.J.Jr RudolfP.R. LanghoffC.A. Unexpected selectivity in the alkylation of polyazamacrocycles.J. Org. Chem.199358153869387610.1021/jo00067a018
    [Google Scholar]
  85. PatersonB.M. DonnellyP.S. Chapter Five - macrocyclic bifunctional chelators and conjugation strategies for copper-64 radiopharmaceuticals.In: Insights from Imaging in Bioinorganic ChemistryAcademic Press2016
    [Google Scholar]
  86. RanaT.M. MearesC.F. N-terminal modification of immunoglobulin polypeptide chains tagged with isothiocyanato chelates.Bioconjug. Chem.19901535736210.1021/bc00005a0102129106
    [Google Scholar]
  87. OgawaK. TakaiK. KanbaraH. KiwadaT. KitamuraY. ShibaK. OdaniA. Preparation and evaluation of a radiogallium complex-conjugated bisphosphonate as a bone scintigraphy agent.Nucl. Med. Biol.201138563163610.1016/j.nucmedbio.2010.12.00421718937
    [Google Scholar]
  88. BraggP.D. HouC. Subunit composition, function, and spatial arrangement in the Ca2+- and Mg2+-activated adenosine triphosphatases of Escherichia coli and Salmonella typhimurium.Arch. Biochem. Biophys.1975167131132110.1016/0003‑9861(75)90467‑1124154
    [Google Scholar]
  89. LomantA.J. FairbanksG. Chemical probes of extended biological structures: Synthesis and properties of the cleavable protein cross-linking reagent [35S]dithiobis(succinimidyl propionate).J. Mol. Biol.1976104124326110.1016/0022‑2836(76)90011‑5957432
    [Google Scholar]
  90. CuatrecasasP. ParikhI. Adsorbents for affinity chromatography. Use of N-hydroxysuccinimide esters of agarose.Biochemistry197211122291229910.1021/bi00762a0135028497
    [Google Scholar]
  91. StarosJ.V. Membrane-impermeant crosslinking reagents: Probes of the structure and dynamics of membrane proteins.Acc. Chem. Res.1988211243544110.1021/ar00156a001
    [Google Scholar]
  92. MeckelM. BergmannR. MiedererM. RoeschF. Bone targeting compounds for radiotherapy and imaging: *Me(III)-DOTA conjugates of bisphosphonic acid, pamidronic acid and zoledronic acid.EJNMMI Radiopharm. Chem.2017111410.1186/s41181‑016‑0017‑129564390
    [Google Scholar]
  93. OgawaK. KawashimaH. ShibaK. WashiyamaK. YoshimotoM. KiyonoY. UedaM. MoriH. SajiH. Development of [90Y]DOTA-conjugated bisphosphonate for treatment of painful bone metastases.Nucl. Med. Biol.200936212913510.1016/j.nucmedbio.2008.11.00719217524
    [Google Scholar]
  94. FakhariA. JalilianA.R. Johari-DahaF. Shafiee-ArdestaniM. KhalajA. Preparation and biological study of (68)Ga-DOTA-alendronate.Asia Ocean. J. Nucl. Med. Biol.2016429810527408898
    [Google Scholar]
  95. SuzukiK. SatakeM. SuwadaJ. OshikiriS. AshinoH. DozonoH. HinoA. KasaharaH. MinamizawaT. Synthesis and evaluation of a novel 68Ga-chelate-conjugated bisphosphonate as a bone-seeking agent for PET imaging.Nucl. Med. Biol.20113871011101810.1016/j.nucmedbio.2011.02.01521982572
    [Google Scholar]
  96. LawsonM.A. XiaZ. BarnettB.L. TriffittJ.T. PhippsR.J. DunfordJ.E. LocklinR.M. EbetinoF.H. RussellR.G.G. Differences between bisphosphonates in binding affinities for hydroxyapatite.J. Biomed. Mater. Res. B Appl. Biomater.201092B114915510.1002/jbm.b.3150019904734
    [Google Scholar]
  97. BurkeB.P. ClementeG.S. ArchibaldS.J. Recent advances in chelator design and labelling methodology for 68 Ga radiopharmaceuticals.J. Labelled Comp. Radiopharm.201457423924310.1002/jlcr.314624497011
    [Google Scholar]
  98. AltaiM. StrandJ. RosikD. SelvarajuR.K. Eriksson KarlströmA. OrlovaA. TolmachevV. Influence of nuclides and chelators on imaging using affibody molecules: comparative evaluation of recombinant affibody molecules site-specifically labeled with ⁶⁸Ga and ¹¹¹In via maleimido derivatives of DOTA and NODAGA.Bioconjug. Chem.20132461102110910.1021/bc300678y23705574
    [Google Scholar]
  99. GhoshS.C. PinkstonK.L. RobinsonH. HarveyB.R. WilganowskiN. GoreK. A.: Comparison of DOTA and NODAGA as chelators for 64Culabeled immunoconjugates.Nucl. Med. Biol.20154217710.1016/j.nucmedbio.2014.09.00925457653
    [Google Scholar]
  100. AshharZ. YusofN.A. Ahmad SaadF.F. Mohd NorS.M. MohammadF. Bahrin Wan KamalW.H. HassanM.H. Ahmad HassaliH. Al-LohedanH.A. Preparation, characterization, and radiolabeling of [68Ga]Ga-NODAGA-Pamidronic Acid: A potential PET bone imaging agent.Molecules20202511266810.3390/molecules2511266832526838
    [Google Scholar]
  101. PfannkuchenN. BergmannR. PietzschJ. BachmannM. RoeschF. DOTA ZOL and NODAGAZOL for theranostics of bone metastases.J. Nucl. Med201758324
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056270935231113035620
Loading
/content/journals/cmir/10.2174/0115734056270935231113035620
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): 18F; 68Ga; Bisphosphonate; Bone imaging; PET; Radiopharmaceuticals; SPECT
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test