Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

The performance of automatic liver segmentation and manual sampling MRI strategies needs be compared to determine interchangeability.

Objective

To compare automatic liver segmentation and manual sampling strategies (manual whole liver segmentation and standardized manual region of interest) for performance in quantifying liver volume and MRI-proton density fat fraction (MRI-PDFF), identifying steatosis grade, and time burden.

Methods

Fifty patients with obesity who underwent liver biopsy and MRI between December 2017 and November 2018 were included. Sampling strategies included automatic and manual whole liver segmentation and 4 and 9 large regions of interest. Intraclass correlation coefficient (ICC), Bland–Altman, linear regression, receiver operating characteristic curve, and Pearson correlation analyses were performed.

Results

Automatic whole liver segmentation liver volume and manual whole liver segmentation liver volume showed excellent agreement (ICC=0.97), high correlation (R2=0.96), and low bias (3.7%, 95% limits of agreement, -4.8%, 12.2%) in liver volume. There was the best agreement (ICC=0.99), highest correlation (R2=1.00), and minimum bias (0.84%, 95% limits of agreement, -0.20%, 1.89%) between automated whole liver segmentation MRI-PDFF and manual whole liver segmentation MRI-PDFF. There was no difference of each paired comparison of receiver operating characteristic curves for detecting steatosis (P=0.07–1.00). The minimum time burden for automatic whole liver segmentation was 0.32 s (0.32–0.33 s).

Conclusion

Automatic measurement has similar effects to manual measurement in quantifying liver volume, MRI-PDFF, and detecting steatosis. Time burden of automatic whole liver segmentation is minimal among all sampling strategies. Manual measurement can be replaced by automatic measurement to improve quantitative efficiency.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056282249231206060136
2024-03-07
2024-12-28
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E15734056282249.html?itemId=/content/journals/cmir/10.2174/0115734056282249231206060136&mimeType=html&fmt=ahah

References

  1. ChanW.K. ChuahK.H. RajaramR.B. LimL.L. RatnasingamJ. VethakkanS.R. Metabolic dysfunction-associated steatotic liver disease (MASLD): A state-of-the-art review.J. Obes. Metab. Syndr.202332319721310.7570/jomes2305237700494
    [Google Scholar]
  2. DavisonB.A. HarrisonS.A. CotterG. AlkhouriN. SanyalA. EdwardsC. ColcaJ.R. IwashitaJ. KochG.G. DittrichH.C. Suboptimal reliability of liver biopsy evaluation has implications for randomized clinical trials.J. Hepatol.20207361322133210.1016/j.jhep.2020.06.02532610115
    [Google Scholar]
  3. KesslerL.G. BarnhartH.X. BucklerA.J. ChoudhuryK.R. KondratovichM.V. ToledanoA. GuimaraesA.R. FiliceR. ZhangZ. SullivanD.C. The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions.Stat. Methods Med. Res.201524192610.1177/096228021453733324919826
    [Google Scholar]
  4. TangA. DesaiA. HamiltonG. WolfsonT. GamstA. LamJ. ClarkL. HookerJ. ChavezT. AngB.D. MiddletonM.S. PetersonM. LoombaR. SirlinC.B. Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease.Radiology2015274241642510.1148/radiol.1414075425247408
    [Google Scholar]
  5. AjmeraV. LoombaR. Imaging biomarkers of NAFLD, NASH, and fibrosis.Mol. Metab.20215010116710.1016/j.molmet.2021.10116733460786
    [Google Scholar]
  6. IdilmanI.S. AniktarH. IdilmanR. KabacamG. SavasB. ElhanA. CelikA. BaharK. KarcaaltincabaM. Hepatic steatosis: Quantification by proton density fat fraction with MR imaging versus liver biopsy.Radiology2013267376777510.1148/radiol.1312136023382293
    [Google Scholar]
  7. SeraiS.D. DillmanJ.R. TroutA.T. Proton density fat fraction measurements at 1.5- and 3-T hepatic MR imaging: Same-day agreement among readers and across two imager manufacturers.Radiology2017284124425410.1148/radiol.201716178628212052
    [Google Scholar]
  8. HongC.W. WolfsonT. SyE.Z. SchleinA.N. HookerJ.C. FazeliD.S. HamiltonG. ReederS.B. LoombaR. SirlinC.B. Optimization of region‐of‐interest sampling strategies for hepatic MRI proton density fat fraction quantification.J. Magn. Reson. Imaging201847498899410.1002/jmri.2584328842937
    [Google Scholar]
  9. HongC.W. CuiJ.Y. BatakisD. XuY. WolfsonT. GamstA.C. SchleinA.N. NegreteL.M. MiddletonM.S. HamiltonG. LoombaR. SchwimmerJ.B. FowlerK.J. SirlinC.B. Repeatability and accuracy of various region-of-interest sampling strategies for hepatic MRI proton density fat fraction quantification.Abdom. Radiol.20214673105311610.1007/s00261‑021‑02965‑533609166
    [Google Scholar]
  10. LiM. CaoD. LiuY. JinL. ZengN. WangL. ZhaoK. LvH. ZhangM. ZhangP. YangZ. ZhangZ. Alterations in the liver fat fraction features examined by magnetic resonance imaging following bariatric surgery: A self-controlled observational study.Obes. Surg.20203051917192810.1007/s11695‑020‑04415‑532048152
    [Google Scholar]
  11. CaoD. LiM. LiuY. JinH. YangD. XuH. LvH. LiuJ.I. ZhangP. ZhangZ. YangZ. Comparison of reader agreement, correlation with liver biopsy, and time-burden sampling strategies for liver proton density fat fraction measured using magnetic resonance imaging in patients with obesity: A secondary cross-sectional study.BMC Med. Imaging20222219210.1186/s12880‑022‑00821‑635581577
    [Google Scholar]
  12. SummersR.M. Progress in fully automated abdominal CT interpretation.AJR Am. J. Roentgenol.20162071677910.2214/AJR.15.1599627101207
    [Google Scholar]
  13. LeCunY. BengioY. HintonG. Deep learning.Nature2015521755343644410.1038/nature1453926017442
    [Google Scholar]
  14. GraffyP.M. SandfortV. SummersR.M. PickhardtP.J. Automated liver fat quantification at nonenhanced abdominal CT for population-based steatosis assessment.Radiology2019293233434210.1148/radiol.201919051231526254
    [Google Scholar]
  15. KinnerS. ReederS.B. YokooT. Quantitative imaging biomarkers of NAFLD.Dig. Dis. Sci.20166151337134710.1007/s10620‑016‑4037‑126848588
    [Google Scholar]
  16. HillC.E. BiasiolliL. RobsonM.D. GrauV. PavlidesM. Emerging artificial intelligence applications in liver magnetic resonance imaging.World J. Gastroenterol.202127406825684310.3748/wjg.v27.i40.682534790009
    [Google Scholar]
  17. ParkH.J. ParkB. LeeS.S. Radiomics and deep learning: Hepatic applications.Korean J. Radiol.202021438740110.3348/kjr.2019.075232193887
    [Google Scholar]
  18. Jimenez-PastorA. Alberich-BayarriA. Lopez-GonzalezR. Marti-AguadoD. FrançaM. BachmannR.S.M. MazzuccoJ. Marti-BonmatiL. Precise whole liver automatic segmentation and quantification of PDFF and R2* on MR images.Eur. Radiol.202131107876788710.1007/s00330‑021‑07838‑533768292
    [Google Scholar]
  19. ChoY. KimM.J. ParkB.J. SimK.C. KeuY.S. HanY.E. SungD.J. HanN.Y. Active learning for efficient segmentation of liver with convolutional neural network-corrected labeling in magnetic resonance imaging-derived proton density fat fraction.J. Digit. Imaging20213451225123610.1007/s10278‑021‑00516‑434561782
    [Google Scholar]
  20. ChenX. WeiX. TangM. LiuA. LaiC. ZhuY. HeW. Liver segmentation in CT imaging with enhanced mask region-based convolutional neural networks.Ann. Transl. Med.2021924176810.21037/atm‑21‑582235071462
    [Google Scholar]
  21. HasenstabK. CunhaG.M. IchikawaS. DehkordyS.F. LeeM.H. KimS.J. SchleinA. CovarrubiasY. SirlinC.B. FowlerK.J. CNN color-coded difference maps accurately display longitudinal changes in liver MRI-PDFF.Eur. Radiol.20213175041504910.1007/s00330‑020‑07649‑033449180
    [Google Scholar]
  22. Martí-AguadoD. Jiménez-PastorA. Alberich-BayarriÁ. Rodríguez-OrtegaA. Alfaro-CervelloC. Mestre-AlagardaC. BauzaM. Gallén-PerisA. Valero-PérezE. BallesterM.P. Gimeno-TorresM. Pérez-GirbésA. BenllochS. Pérez-RojasJ. PugliaV. FerrándezA. AguileraV. Escudero-GarcíaD. SerraM.A. Martí-BonmatíL. Automated whole-liver MRI segmentation to assess steatosis and iron quantification in chronic liver disease.Radiology2022302234535410.1148/radiol.202121102734783592
    [Google Scholar]
  23. CampoC.A. HernandoD. SchubertT. BookwalterC.A. PayA.J.V. ReederS.B. Standardized approach for ROI-based measurements of proton density fat fraction and R2* in the liver.AJR Am. J. Roentgenol.2017209359260310.2214/AJR.17.1781228705058
    [Google Scholar]
  24. YangY. JiaX. WangL. Robust liver segmentation using boundary preserving dual attention network.5th Chinese Conference, PRCV 2022Shenzhen, ChinaNovember 4–7, 202229831010.1007/978‑3‑031‑18910‑4_25
    [Google Scholar]
  25. ZhouB.F. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults--study on optimal cut-off points of body mass index and waist circumference in Chinese adults.Biomed. Environ. Sci.2002151839612046553
    [Google Scholar]
  26. Expert ConsultationW.H.O. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies.Lancet2004363940315716310.1016/S0140‑6736(03)15268‑314726171
    [Google Scholar]
  27. BedossaP. Diagnosis of non‐alcoholic fatty liver disease/non‐alcoholic steatohepatitis: Why liver biopsy is essential.Liver Int.201838S1646610.1111/liv.1365329427497
    [Google Scholar]
  28. JohnsonB.L. SchroederM.E. WolfsonT. GamstA.C. HamiltonG. ShiehmortezaM. LoombaR. SchwimmerJ.B. ReederS. MiddletonM.S. SirlinC.B. Effect of flip angle on the accuracy and repeatability of hepatic proton density fat fraction estimation by complex data-based, T1-independent, T2*-corrected, spectrum-modeled MRI.J. Magn. Reson. Imaging201439244044710.1002/jmri.2415323596052
    [Google Scholar]
  29. TangA. ChenJ. LeT.A. ChangchienC. HamiltonG. MiddletonM.S. LoombaR. SirlinC.B. Cross-sectional and longitudinal evaluation of liver volume and total liver fat burden in adults with nonalcoholic steatohepatitis.Abdom. Imaging2015401263710.1007/s00261‑014‑0175‑025015398
    [Google Scholar]
  30. ProcterA.J. SunJ.Y. MalcolmP.N. TomsA.P. Measuring liver fat fraction with complex-based chemical shift MRI: the effect of simplified sampling protocols on accuracy.BMC Med. Imaging20191911410.1186/s12880‑019‑0311‑y30736759
    [Google Scholar]
  31. RaunigD.L. McShaneL.M. PennelloG. GatsonisC. CarsonP.L. VoyvodicJ.T. WahlR.L. KurlandB.F. SchwarzA.J. GönenM. ZahlmannG. KondratovichM.V. O’DonnellK. PetrickN. ColeP.E. GarraB. SullivanD.C. Quantitative imaging biomarkers: A review of statistical methods for technical performance assessment.Stat. Methods Med. Res.2015241276710.1177/096228021453734424919831
    [Google Scholar]
  32. DiedenhofenB. MuschJ. Cocor: A comprehensive solution for the statistical comparison of correlations.PLoS One2015104e012194510.1371/journal.pone.012194525835001
    [Google Scholar]
  33. WangK. MamidipalliA. RetsonT. BahramiN. HasenstabK. BlansitK. BassE. DelgadoT. CunhaG. MiddletonM.S. LoombaR. Neuschwander-TetriB.A. SirlinC.B. HsiaoA. Automated CT and MRI liver segmentation and biometry using a generalized convolutional neural network.Radiol. Artif. Intell.20191218002210.1148/ryai.201918002232582883
    [Google Scholar]
  34. van WissenJ. BakkerN. DoodemanH.J. JansmaE.P. BonjerH.J. HoudijkA.P.J. Preoperative methods to reduce liver volume in bariatric surgery: A systematic review.Obes. Surg.201626225125610.1007/s11695‑015‑1769‑526123526
    [Google Scholar]
  35. RomeijnM.M. KolenA.M. HolthuijsenD.D.B. JanssenL. SchepG. LeclercqW.K.G. van DielenF.M.H. Effectiveness of a low-calorie diet for liver volume reduction prior to bariatric surgery: A systematic review.Obes. Surg.202131135035610.1007/s11695‑020‑05070‑633140292
    [Google Scholar]
  36. SofueK. MiletoA. DaleB.M. ZhongX. BashirM.R. Interexamination repeatability and spatial heterogeneity of liver iron and fat quantification using MRI-based multistep adaptive fitting algorithm.J. Magn. Reson. Imaging20154251281129010.1002/jmri.2492225920074
    [Google Scholar]
  37. VuK.N. GilbertG. ChalutM. ChagnonM. ChartrandG. TangA. MRI‐determined liver proton density fat fraction, with MRS validation: Comparison of regions of interest sampling methods in patients with type 2 diabetes.J. Magn. Reson. Imaging20164351090109910.1002/jmri.2508326536609
    [Google Scholar]
  38. MahadyS.E. AdamsL.A. Burden of non-alcoholic fatty liver disease in Australia.J. Gastroenterol. Hepatol.201833S111110.1111/jgh.1427029851153
    [Google Scholar]
  39. NakayamaY. LiQ. KatsuragawaS. IkedaR. HiaiY. AwaiK. KusunokiS. YamashitaY. OkajimaH. InomataY. DoiK. Automated hepatic volumetry for living related liver transplantation at multisection CT.Radiology2006240374374810.1148/radiol.240305085016857979
    [Google Scholar]
  40. YokooT. SeraiS.D. PirastehA. BashirM.R. HamiltonG. HernandoD. HuH.H. HetterichH. KühnJ.P. KukukG.M. LoombaR. MiddletonM.S. ObuchowskiN.A. SongJ.S. TangA. WuX. ReederS.B. SirlinC.B. Linearity, bias, and precision of hepatic proton density fat fraction measurements by using MR imaging: A meta-analysis.Radiology2018286248649810.1148/radiol.201717055028892458
    [Google Scholar]
  41. TamakiN. AjmeraV. LoombaR. Non-invasive methods for imaging hepatic steatosis and their clinical importance in NAFLD.Nat. Rev. Endocrinol.2022181556610.1038/s41574‑021‑00584‑034815553
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056282249231206060136
Loading
/content/journals/cmir/10.2174/0115734056282249231206060136
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test