Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Fat-suppressed (FS) T2-weighed turbo spin-echo (TSE) sequence was used to detect the signal of the thymus and the characteristics of the thymus location, measure the two-dimensional diameter at specific levels, and analyze the association with gestational weeks.

Methods

This study involved 51 fetal specimens. Post-mortem MRI scanning was implemented with a 3.0-T MRI system. T2-weighted imaging (T2WI) features of the thymus in fetuses were quantitatively investigated with DICOM images. Statistical analysis was done with the Chi-Square test, one-way ANOVA, and Student’s t-test.

Results

There was heterogeneity in the morphology of the fetal thymus. FS T2-weighted TSE sequence clearly exhibited the microstructure of the fetal thymus. The thymus extensively showed a lobulated appearance. The central signal is much higher than the peripheral signal in each lobule. In addition, FS-T2WI images can clearly show the interlobular septum, which is filled with fluid and presents a linear high signal. The signal intensity of fetal thymus increased with gestational weeks. The diameter measured in a particular plane was highly correlated with gestational week.

Conclusion

FS T2-weighted TSE sequence provides high-resolution images of the fetal thymus. The change in signal intensity, location, and two-dimensional diameter in a specific plane can be used as a research direction for the fetal thymus.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056282196240105060732
2024-01-01
2025-05-29
The full text of this item is not currently available.

References

  1. LiangC.D. HuangS.C. Sonographic study of the thymus in infants and children.J. Formos. Med. Assoc.19979697007039308323
    [Google Scholar]
  2. TangshewinsirikulC. PanburanaP. Sonographic measurement of fetal thymus size in uncomplicated singleton pregnancies.J. Clin. Ultrasound201745315015910.1002/jcu.2241927862004
    [Google Scholar]
  3. GökK. OzdenS. Ultrasonographic evaluation of the fetal thymic-thoracic ratio in preeclampsia.J. Matern. Fetal Neonatal Med.2023361218373910.1080/14767058.2023.218373936851844
    [Google Scholar]
  4. AsgharA. AsadM.R. NaazS. RaniM. Screening of the growth of thymus of human fetuses.Anat. Cell Biol.201952447848510.5115/acb.19.09431949988
    [Google Scholar]
  5. LiuF. ZhangZ. LinX. TengG. MengH. YuT. FangF. ZangF. LiZ. LiuS. Development of the human fetal cerebellum in the second trimester: A post mortem magnetic resonance imaging evaluation.J. Anat.2011219558258810.1111/j.1469‑7580.2011.01418.x21812776
    [Google Scholar]
  6. ZhangS. YuanX. PengZ. JianN. TianM. FengX. LinX. WangX. Normal fetal development of the cervical, thoracic, and lumbar spine: A postmortem study based on magnetic resonance imaging.Prenat. Diagn.202141898999710.1002/pd.598434128545
    [Google Scholar]
  7. ZhangZ. LiuS. LinX. TengG. YuT. FangF. ZangF. Development of fetal brain of 20 weeks gestational age: Assessment with post-mortem magnetic resonance imaging.Eur. J. Radiol.2011803e432e43910.1016/j.ejrad.2010.11.02421146341
    [Google Scholar]
  8. TianM. XuF. XiaQ. TangY. ZhangZ. LinX. MengH. FengL. LiuS. Morphological development of the human fetal striatum during the second trimester.Cereb. Cortex202232225072508210.1093/cercor/bhab53235078212
    [Google Scholar]
  9. MengH. ZhangZ. GengH. LinX. FengL. TengG. FangF. ZangF. LiuS. Development of the subcortical brain structures in the second trimester: Assessment with 7.0-T MRI.Neuroradiology201254101153115910.1007/s00234‑012‑1069‑x22811291
    [Google Scholar]
  10. ZhangZ. MengH. HouZ. MaJ. FengL. LinX. TangY. ZhangX. LiuQ. LiuS. Fetal adrenal gland in the second half of gestation: Morphometrical assessment with 3.0T post-mortem MRI.PLoS One2013810e7551110.1371/journal.pone.007551124116052
    [Google Scholar]
  11. KangX. SanchezT.C. ArthursO.J. BevilacquaE. CannieM.M. SegersV. LecomteS. SebireN.J. JaniJ.C. Postmortem fetal imaging: Prospective blinded comparison of two-dimensional ultrasound with magnetic resonance imaging.Ultrasound Obstet. Gynecol.201954679179910.1002/uog.2021730644623
    [Google Scholar]
  12. YuanL. CaoJ. WangZ. ZhangL. WangX. WuY. DongJ. XieH. LinX. Fetal thymus in the middle and late trimesters: Morphometry and development using post‑mortem 3.0T MRI.Exp. Ther. Med.2020205110.3892/etm.2020.917232952634
    [Google Scholar]
  13. DuJ XiaoZ LyuF ShengB LyuF LiuZ Diagnostic value of fast imaging employing steady state acquisition and single shot fast spin echo sequences in diagnosis of normal fetal thymuses: Comparative study.Chinese J. Med. Imag. Technol.2017152630
    [Google Scholar]
  14. ChoJ.Y. MinJ.Y. LeeY.H. McCrindleB. HornbergerL.K. YooS.J. Diameter of the normal fetal thymus on ultrasound.Ultrasound Obstet. Gynecol.200729663463810.1002/uog.397917385216
    [Google Scholar]
  15. LiL. BahtiyarM.O. BuhimschiC.S. ZouL. ZhouQ.C. CopelJ.A. Assessment of the fetal thymus by two- and three-dimensional ultrasound during normal human gestation and in fetuses with congenital heart defects.Ultrasound Obstet. Gynecol.201137440440910.1002/uog.885320886509
    [Google Scholar]
  16. Guihard-CostaA.M. MénezF. DelezoideA.L. Organ weights in human fetuses after formalin fixation: standards by gestational age and body weight.Pediatr. Dev. Pathol.20025655957810.1007/s10024‑002‑0036‑712399830
    [Google Scholar]
  17. ShelmerdineS.C. HutchinsonJ.C. ArthursO.J. SebireN.J. Latest developments in post-mortem foetal imaging.Prenat. Diagn.2020401283710.1002/pd.556231525275
    [Google Scholar]
  18. StoryL. ZhangT. UusA. HutterJ. EgloffA. GibbonsD. HoA. Al-AdnaniM. KnightC.L. TheodoulouI. DeprezM. SeedP.T. TribeR.M. ShennanA.H. RutherfordM. Antenatal thymus volumes in fetuses that delivered <32 weeks’ gestation: An MRI pilot study.Acta Obstet. Gynecol. Scand.202110061040105010.1111/aogs.1398332865812
    [Google Scholar]
  19. UusA. ZhangT. JacksonL.H. RobertsT.A. RutherfordM.A. HajnalJ.V. DeprezM. Deformable slice-to-volume registration for motion correction of fetal body and placenta MRI.IEEE Trans. Med. Imaging20203992750275910.1109/TMI.2020.297484432086200
    [Google Scholar]
  20. MyersR. HutterJ. MatthewJ. ZhangT. UusA. LloydD. EgloffA. DeprezM. NandaS. RutherfordM. StoryL. Assessment of the fetal thymus gland: Comparing MRI-acquired thymus volumes with 2D ultrasound measurements.Eur. J. Obstet. Gynecol. Reprod. Biol.20212641710.1016/j.ejogrb.2021.06.02634246829
    [Google Scholar]
  21. ThayyilS. SchievanoS. RobertsonN.J. JonesR. ChittyL.S. SebireN.J. TaylorA.M. A semi-automated method for non-invasive internal organ weight estimation by post-mortem magnetic resonance imaging in fetuses, newborns and children.Eur. J. Radiol.200972232132610.1016/j.ejrad.2008.07.01318768277
    [Google Scholar]
  22. HanB.K. SuhY.L. YoonH.K. Thymic ultrasound.Pediatr. Radiol.200131747447910.1007/s00247010046711486799
    [Google Scholar]
  23. ErnstL.M. RuchelliE.D. CarreonC.K. HuffD.S. Color Atlas of Human Fetal and Neonatal Histology.Springer201910.1007/978‑3‑030‑11425‑1
    [Google Scholar]
  24. SingerD. Disorders of the lymphoid tissue and immune system.Textbook of Fetal and Neonatal Pathology.BostonBlackwell Science1998
    [Google Scholar]
  25. YekelerE. TambagA. TunaciA. GenchellacH. DursunM. GokcayG. AcunasG. Analysis of the thymus in 151 healthy infants from 0 to 2 years of age.J. Ultrasound Med.200423101321132610.7863/jum.2004.23.10.132115448322
    [Google Scholar]
  26. WangY. LiuY. LiY. WuL. LiangZ. CongS. Evaluation of fetal thymus size with thymic-thoracic ratio and clinical significance.Chinese J. Med. Imag. Technol.2017335735738
    [Google Scholar]
  27. ZhaoZ LeiY. Histological observation of 165 cases of fetal thymus in Xining.Qinghai Med. J.199052
    [Google Scholar]
  28. PearseG. Normal structure, function and histology of the thymus.Toxicol. Pathol.200634550451410.1080/0192623060086554917067941
    [Google Scholar]
  29. BaleP.M. Sotelo-AvilaC. Maldescent of the thymus: 34 necropsy and 10 surgical cases, including 7 thymuses medial to the mandible.Pediatr. Pathol.199313218119010.3109/155138193090482058464779
    [Google Scholar]
  30. ZalelY. GamzuR. MashiachS. AchironR. The development of the fetal thymus: An in utero sonographic evaluation.Prenat. Diagn.200222211411710.1002/pd.25711857615
    [Google Scholar]
  31. NoëlA.C. PelluardF. DelezoideA.L. DevismeL. LoeuilletL. LeroyB. MartinA. BouvierR. LaquerriereA. Jeanne-PasquierC. Bessieres-GrattaglianoB. MechlerC. AlanioE. LeroyC. GaillardD. Fetal phenotype associated with the 22q11 deletion.Am. J. Med. Genet. A.2014164112724273110.1002/ajmg.a.3672025111715
    [Google Scholar]
  32. Goncu AyhanS. TurgutE. OlukluD. Ozden TokaliogluE. Menekse BeserD. Moraloglu TekinO. SahinD. Influence of Covid-19 infection on fetal thymus size after recovery.J. Perinat. Med.202250213914310.1515/jpm‑2021‑032234881540
    [Google Scholar]
  33. IchijimaK. YamabeH. KobashiY. OgawaH. AkaishiK. An unusual case of metaphyseal chondrodysplasia with an abnormal perilacunar matrix associated with agranulocytosis and hypoplasia of the thymus.Virchows Arch. A Pathol. Anat. Histol.1981391327528910.1007/BF007091607281494
    [Google Scholar]
  34. Muller BrochutA.C. TaffeP. Piaget-RosselR. de LevalL. RougemontA.L. Fetal Anthropometric features: A postmortem study of fetuses after the termination of pregnancy for psychosocial reasons between 12 and 20 gestational weeks.Pediatr. Dev. Pathol.201922324325110.1177/109352661881252830451574
    [Google Scholar]
  35. DavidsonJ.R. UusA. MatthewJ. EgloffA.M. DeprezM. YardleyI. De CoppiP. DavidA. CarmichaelJ. RutherfordM.A. Fetal body MRI and its application to fetal and neonatal treatment: An illustrative review.Lancet Child Adolesc. Health20215644745810.1016/S2352‑4642(20)30313‑833721554
    [Google Scholar]
  36. UusA.U. GrigorescuI. van PoppelM.P.M. SteinwegJ.K. RobertsT.A. RutherfordM.A. HajnalJ.V. LloydD.F.A. PushparajahK. DeprezM. Automated 3D reconstruction of the fetal thorax in the standard atlas space from motion-corrupted MRI stacks for 21–36 weeks GA range.Med. Image Anal.20228010248410.1016/j.media.2022.10248435649314
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056282196240105060732
Loading
/content/journals/cmir/10.2174/0115734056282196240105060732
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test