Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

In the world, breast cancer is the most commonly diagnosed cancer among women. Currently, MRI is the most sensitive breast imaging method for detecting breast cancer, although false positive rates are still an issue. To date, the accuracy of breast MRI is widely recognized across various clinical scenarios, in particular, staging of known cancer, screening for breast cancer in high-risk women, and evaluation of response to neoadjuvant chemotherapy. Since technical development and further clinical indications have expanded over recent years, dedicated breast radiologists need to constantly update their knowledge and expertise to remain confident and maintain high levels of diagnostic performance in breast MRI. This review aims to detail current and future applications of breast MRI, from technological requirements and advances to new multiparametric and abbreviated protocols, and ultrafast imaging, as well as current and future indications.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056274670240205090722
2024-02-26
2025-06-18
The full text of this item is not currently available.

References

  1. SardanelliF. BoetesC. BorischB. DeckerT. FedericoM. GilbertF.J. HelbichT. Heywang-KöbrunnerS.H. KaiserW.A. KerinM.J. ManselR.E. MarottiL. MartincichL. MauriacL. Meijers-HeijboerH. OrecchiaR. PanizzaP. PontiA. PurushothamA.D. RegitnigP. Del TurcoM.R. ThibaultF. WilsonR. Magnetic resonance imaging of the breast: Recommendations from the EUSOMA working group.Eur. J. Cancer20104681296131610.1016/j.ejca.2010.02.01520304629
    [Google Scholar]
  2. MannR.M. KuhlC.K. KinkelK. BoetesC. Breast MRI: Guidelines from the European Society of Breast Imaging.Eur. Radiol.20081871307131810.1007/s00330‑008‑0863‑718389253
    [Google Scholar]
  3. MannR.M. KuhlC.K. MoyL. Contrast-enhanced MRI for breast cancer screening.J. Magn. Reson. Imaging201950237739010.1002/jmri.2665430659696
    [Google Scholar]
  4. ChenS.Q. HuangM. ShenY.Y. LiuC.L. XuC.X. Application of abbreviated proto- col of magnetic resonance imaging for breast cancer screening in dense breast tissue.Acad. Radiol.201724331632010.1016/j.acra.2016.10.00327916594
    [Google Scholar]
  5. BakkerM.F. de LangeS.V. PijnappelR.M. MannR.M. PeetersP.H.M. MonninkhofE.M. EmausM.J. LooC.E. BisschopsR.H.C. LobbesM.B.I. de JongM.D.F. DuvivierK.M. VeltmanJ. KarssemeijerN. de KoningH.J. van DiestP.J. MaliW.P.T.M. van den BoschM.A.A.J. VeldhuisW.B. van GilsC.H. Supplemental MRI Screening for Women with Extremely Dense Breast Tissue.N. Engl. J. Med.2019381222091210210.1056/NEJMoa190398631774954
    [Google Scholar]
  6. KuhlC.K. StrobelK. BielingH. LeutnerC. SchildH.H. SchradingS. Supplemental breast MR imaging screen- ing of women with average risk of breast cancer.Radiology2017283236137010.1148/radiol.201616144428221097
    [Google Scholar]
  7. MannR.M. ChoN. MoyL. Breast MRI: State of the Art.Radiology2019292352053610.1148/radiol.201918294731361209
    [Google Scholar]
  8. KonyerN.B. RamsayE.A. BronskillM.J. PlewesD.B. Comparison of MR imaging breast coils.Radiology2002222383083410.1148/radiol.222300131011867809
    [Google Scholar]
  9. YehE.D. Georgian-SmithD. RazaS. BussolariL. Pawlisz-HoffJ. BirdwellR.L. Positioning in breast MR imaging to optimize image quality.Radiographics2014341E1E1710.1148/rg.34112519324428300
    [Google Scholar]
  10. MarshallH. DevineP.M. ShanmugaratnamN. FobelR. SieglerP. PironC.A. PlewesD.B. Evaluation of multicoil breast arrays for parallel imaging.J. Magn. Reson. Imaging201031232833810.1002/jmri.2202320099345
    [Google Scholar]
  11. DeshmaneA. GulaniV. GriswoldM.A. SeiberlichN. Parallel MR imaging.J. Magn. Reson. Imaging2012361557210.1002/jmri.2363922696125
    [Google Scholar]
  12. MannR.M. van ZelstJ.C.M. VreemannS. MusR.D.M. Is Ultrafast or Abbreviated Breast MRI Ready for Prime Time?Curr. Breast Cancer Rep.201911191610.1007/s12609‑019‑0300‑8
    [Google Scholar]
  13. PengS. GuoY. ZhangX. TaoJ. LiuJ. ZhuW. ChenL. YangF. High-Resolution DWI with Simultaneous Multi-Slice Readout-Segmented Echo Planar Imaging for the Evaluation of Malignant and Benign Breast Lesions.Diagnostics (Basel)20211112227310.3390/diagnostics1112227334943509
    [Google Scholar]
  14. ChhetriA. LiX. RispoliJ.V. Current and Emerging Magnetic Resonance-Based Techniques for Breast Cancer.Front. Med. (Lausanne)2020717510.3389/fmed.2020.0017532478083
    [Google Scholar]
  15. VreemannS. Rodriguez-RuizA. NickelD. HeacockL. AppelmanL. van ZelstJ. KarssemeijerN. WeilandE. MaasM. MoyL. KieferB. MannR.M. Compressed Sensing for Breast MRI: Resolving the Trade-Off Between Spatial and Temporal Resolution.Invest. Radiol.2017521057458210.1097/RLI.000000000000038428463932
    [Google Scholar]
  16. KuhlC.K. JostP. MorakkabatiN. ZivanovicO. SchildH.H. GiesekeJ. Contrast-enhanced MR imaging of the breast at 3.0 and 1.5 T in the same patients: Initial experience.Radiology2006239366667610.1148/radiol.239205050916549623
    [Google Scholar]
  17. SpickC. SzolarD.H.M. PreidlerK.W. ReittnerP. RauchK. BraderP. TillichM. BaltzerP.A. 3 Tesla breast MR imaging as a problem-solving tool: Diagnostic performance and incidental lesions.PLoS One2018131e019028710.1371/journal.pone.019028729293582
    [Google Scholar]
  18. SchenckJ.F. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds.Med. Phys.199623681585010.1118/1.5978548798169
    [Google Scholar]
  19. Rakow-PennerR. DanielB. YuH. Sawyer-GloverA. GloverG.H. Relaxation times of breast tissue at 1.5T and 3T measured using IDEAL.J. Magn. Reson. Imaging2006231879110.1002/jmri.2046916315211
    [Google Scholar]
  20. ButlerR.S. ChenC. VashiR. HooleyR.J. PhilpottsL.E. 3.0 Tesla vs 1.5 Tesla breast magnetic resonance imaging in newly diagnosed breast cancer patients.World J. Radiol.20135828529410.4329/wjr.v5.i8.28524003354
    [Google Scholar]
  21. RahbarH. DeMartiniW.B. LeeA.Y. PartridgeS.C. PeacockS. LehmanC.D. Accuracy of 3T versus 1.5T breast MRI for pre-operative assessment of extent of disease in newly diagnosed DCIS.Eur. J. Radiol.201584461161610.1016/j.ejrad.2014.12.02925604909
    [Google Scholar]
  22. LourencoA.P. DoneganL. KhalilH. MainieroM.B. Improving outcomes of screening breast MRI with practice evolution: Initial clinical experience with 3T compared to 1.5T.J. Magn. Reson. Imaging201439353553910.1002/jmri.2419823720144
    [Google Scholar]
  23. PinedaF.D. MedvedM. FanX. IvancevicM.K. AbeH. ShimauchiA. NewsteadG.M. KarczmarG.S. Comparison of dynamic contrast-enhanced MRI parameters of breast lesions at 1.5 and 3.0 T: A pilot study.Br. J. Radiol.20158810492015002110.1259/bjr.2015002125785918
    [Google Scholar]
  24. UematsuT. KasamiM. YuenS. IgarashiT. NasuH. Comparison of 3- and 1.5-T dynamic breast MRI for visualization of spiculated masses previously identified using mammography.AJR Am. J. Roentgenol.20121986W611W61710.2214/AJR.11.746322623579
    [Google Scholar]
  25. RagupathyS.K.A. GagliardiT. RedpathT.W. FlynnS. JagpalB. BegleyJ.K.P. GilbertF.J. Comparison of 1.5T and 3T in assessment of suspicious breast lesions.Breast Cancer Res.201012S3P1810.1186/bcr2671
    [Google Scholar]
  26. DietzelM. WenkelE. HammonM. ClauserP. UderM. Schulz-WendtlandR. BaltzerP.A.T. Does higher field strength translate into better diagnostic accuracy? A prospective comparison of breast MRI at 3 and 1.5 Tesla.Eur. J. Radiol.2019114515610.1016/j.ejrad.2019.02.03331005176
    [Google Scholar]
  27. WestraC. DialaniV. MehtaT.S. EisenbergR.L. Using T2-weighted sequences to more accurately characterize breast masses seen on MRI.AJR Am. J. Roentgenol.20142023W183W19010.2214/AJR.13.1126624555613
    [Google Scholar]
  28. CheonH. KimH.J. KimT.H. RyeomH.K. LeeJ. KimG.C. YukJ.S. KimW.H. Invasive breast cancer: Prognostic value of peritumoral edema identified at preoperative MR imaging.Radiology20182871687510.1148/radiol.201717115729315062
    [Google Scholar]
  29. HeibergE.V. PermanW.H. HerrmannV.M. JanneyC.G. Dynamic sequential 3D gadolinium-enhanced MRI of the whole breast.Magn. Reson. Imaging199614433734810.1016/0730‑725X(95)02112‑78782170
    [Google Scholar]
  30. FlanaganF.L. MurrayJ.G. GilliganP. StackJ.P. EnnisJ.T. Digital subtraction in Gd-DTPA enhanced imaging of the breast.Clin. Radiol.1995501284885410.1016/S0009‑9260(05)83106‑X8536396
    [Google Scholar]
  31. KuhlC.K. SchradingS. StrobelK. SchildH.H. HilgersR.D. BielingH.B. Abbreviated breast magnetic resonance imaging (MRI): First postcontrast subtracted images and maximum-intensity projection-a novel approach to breast cancer screening with MRI.J. Clin. Oncol.201432222304231010.1200/JCO.2013.52.538624958821
    [Google Scholar]
  32. KuhlC.K. MielcareckP. KlaschikS. LeutnerC. WardelmannE. GiesekeJ. SchildH.H. Dynamic breast MR imaging: Are signal intensity time course data useful for differential diagnosis of enhancing lesions?Radiology1999211110111010.1148/radiology.211.1.r99ap3810110189459
    [Google Scholar]
  33. MarinoM.A. HelbichT. BaltzerP. Pinker-DomenigK. Multiparametric MRI of the breast: A review.J. Magn. Reson. Imaging201847230131510.1002/jmri.2579028639300
    [Google Scholar]
  34. RahbarH. PartridgeS.C. Multiparametric MR imaging of breast cancer.Magn. Reson. Imaging Clin. N. Am.201624122323810.1016/j.mric.2015.08.01226613883
    [Google Scholar]
  35. HelbichT.H. RobertsT.P.L. GossmannA. WendlandM.F. ShamesD.M. AdachiM. YangS. HuberS. DaldrupH. BraschR.C. Quantitative gadopentetate-enhanced MRI of breast tumors: Testing of different analytic methods.Magn. Reson. Med.200044691592410.1002/1522‑2594(200012)44:6<915::AID‑MRM13>3.0.CO;2‑S11108629
    [Google Scholar]
  36. MusR.D. BorelliC. BultP. WeilandE. KarssemeijerN. BarentszJ.O. Gubern-MéridaA. PlatelB. MannR.M. Time to enhancement derived from ultrafast breast MRI as a novel parameter to discriminate benign from malignant breast lesions.Eur. J. Radiol.201789909610.1016/j.ejrad.2017.01.02028267555
    [Google Scholar]
  37. OnishiN. SadinskiM. GibbsP. GallagherK.M. HughesM.C. KoE.S. DashevskyB.Z. ShanbhagD.D. FungM.M. HuntT.M. MartinezD.F. Shukla-DaveA. MorrisE.A. SuttonE.J. Differentiation between subcentimeter carcinomas and benign lesions using kinetic parameters derived from ultrafast dynamic contrast-enhanced breast MRI.Eur. Radiol.202030275676610.1007/s00330‑019‑06392‑531468162
    [Google Scholar]
  38. PeterS.C. WenkelE. WeilandE. DietzelM. JankaR. HartmannA. EmonsJ. UderM. EllmannS. Combination of an ultrafast TWIST-VIBE Dixon sequence protocol and diffusion-weighted imaging into an accurate easily applicable classification tool for masses in breast MRI.Eur. Radiol.20203052761277210.1007/s00330‑019‑06608‑832002644
    [Google Scholar]
  39. ShinS.U. ChoN. KimS.Y. LeeS.H. ChangJ.M. MoonW.K. Time-to-enhancement at ultrafast breast DCE-MRI: Potential imaging biomarker of tumour aggressiveness.Eur. Radiol.20203074058406810.1007/s00330‑020‑06693‑032144456
    [Google Scholar]
  40. KimJ.J. KimJ.Y. HwangboL. SuhH.B. SonY. NickelM.D. GrimmR. Ultrafast Dynamic Contrast-Enhanced MRI Using Compressed Sensing: Associations of Early Kinetic Parameters With Prognostic Factors of Breast Cancer.AJR Am. J. Roentgenol.20212171566310.2214/AJR.20.2345733909465
    [Google Scholar]
  41. LeeC.S. MoyL. Ultrafast Breast MRI to Predict Pathologic Response after Neoadjuvant Therapy.Radiology2022305357557710.1148/radiol.22151135880985
    [Google Scholar]
  42. RamtohulT. TescherC. VaflardP. CyrtaJ. GirardN. MalhaireC. TardivonA. Prospective evaluation of ultrafast breast MRI for predicting pathologic response after neoadjuvant therapies.Radiology2022305356557410.1148/radiol.22038935880977
    [Google Scholar]
  43. RomeoV. Standardization of Quantitative DCE-MRI Parameters Measurement: An Urgent Need for Breast Cancer Imaging.Acad. Radiol.202229Suppl. 1S87S8810.1016/j.acra.2021.12.00234991941
    [Google Scholar]
  44. MangoV.L. MorrisE.A. David DershawD. AbramsonA. FryC. MoskowitzC.S. HughesM. KaplanJ. JochelsonM.S. Abbreviated protocol for breast MRI: Are multiple sequences needed for cancer detection?Eur. J. Radiol.2015841657010.1016/j.ejrad.2014.10.00425454099
    [Google Scholar]
  45. HarveyS.C. Di CarloP.A. LeeB. ObadinaE. SippoD. MullenL. An abbreviated protocol for high-risk screening breast MRI saves time and resources.J. Am. Coll. Radiol.20161311R74R8010.1016/j.jacr.2016.09.03127814819
    [Google Scholar]
  46. OldriniG. DerrazI. SalleronJ. MarchalF. HenrotP. Impact of an abbreviated protocol for breast MRI in diagnostic accuracy.Diagn. Interv. Radiol.2018241121610.5152/dir.2018.1660929317373
    [Google Scholar]
  47. HeacockL. MelsaetherA.N. HellerS.L. GaoY. PysarenkoK.M. BabbJ.S. KimS.G. MoyL. Evaluation of a known breast cancer using an abbreviated breast MRI protocol: Correlation of imaging characteristics and pathology with lesion detection and conspicuity.Eur. J. Radiol.201685481582310.1016/j.ejrad.2016.01.00526971429
    [Google Scholar]
  48. GrimmL.J. SooM.S. YoonS. KimC. GhateS.V. JohnsonK.S. Abbreviated screening protocol for breast MRI: A feasibility study.Acad. Radiol.20152291157116210.1016/j.acra.2015.06.00426152500
    [Google Scholar]
  49. MoschettaM. TelegrafoM. RellaL. Stabile IanoraA.A. AngelelliG. Abbreviated combined MR protocol: A new faster strategy for characterizing breast lesions.Clin. Breast Cancer201616320721110.1016/j.clbc.2016.02.00827108218
    [Google Scholar]
  50. ChoiB.H. ChoiN. KimM.Y. YangJ.H. YooY.B. JungH.K. Usefulness of abbreviated breast MRI screening for women with a history of breast cancer surgery.Breast Cancer Res. Treat.2018167249550210.1007/s10549‑017‑4530‑z29030785
    [Google Scholar]
  51. KuhlC.K. Abbreviated breast MRI for screening women with dense breast: The EA1141 trial.Br. J. Radiol.20189110902017044110.1259/bjr.2017044128749202
    [Google Scholar]
  52. ComstockC.E. GatsonisC. NewsteadG.M. SnyderB.S. GareenI.F. BerginJ.T. RahbarH. SungJ.S. JacobsC. HarveyJ.A. NicholsonM.H. WardR.C. HoltJ. PratherA. MillerK.D. SchnallM.D. KuhlC.K. Comparison of Abbreviated Breast MRI vs Digital Breast Tomosynthesis for Breast Cancer Detection Among Women With Dense Breasts Undergoing Screening.JAMA2020323874675610.1001/jama.2020.057232096852
    [Google Scholar]
  53. OnegaT. LeeC.I. BenkeserD. Alford-TeasterJ. HaasJ.S. TostesonA.N.A. HillD. ShiX. HendersonL.M. HubbardR.A. Travel burden to breast MRI and utilization: Are risk and sociodemographics related?J. Am. Coll. Radiol.201613661161910.1016/j.jacr.2016.01.02227026577
    [Google Scholar]
  54. GreenwoodH.I. Abbreviated protocol breast MRI: The past, present, and future.Clin. Imaging20195316917310.1016/j.clinimag.2018.10.01730366213
    [Google Scholar]
  55. PinkerK. HelbichT.H. MorrisE.A. The potential of multiparametric MRI of the breast.Br. J. Radiol.20179010692016071510.1259/bjr.2016071527805423
    [Google Scholar]
  56. ZhuC.R. ChenK.Y. LiP. XiaZ.Y. WangB. Accuracy of multiparametric MRI in distinguishing the breast malignant lesions from benign lesions: A meta-analysis.Acta Radiol.202162101290129710.1177/028418512096390033059458
    [Google Scholar]
  57. Le BihanD. BretonE. LallemandD. GrenierP. CabanisE. Laval-JeantetM. MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders.Radiology1986161240140710.1148/radiology.161.2.37639093763909
    [Google Scholar]
  58. IimaM. HondaM. SigmundE.E. Ohno KishimotoA. KataokaM. TogashiK. Diffusion MRI of the breast: Current status and future directions.J. Magn. Reson. Imaging2020521709010.1002/jmri.2690831520518
    [Google Scholar]
  59. PartridgeS.C. McDonaldE.S. Diffusion weighted magnetic resonance imaging of the breast: Protocol optimization, interpretation, and clinical applications.Magn. Reson. Imaging Clin. N. Am.201321360162410.1016/j.mric.2013.04.00723928248
    [Google Scholar]
  60. ShiR. YaoQ. WuL. XuJ. Breast lesions: Diagnosis using diffusion weighted imaging at 1.5T and 3.0T–systematic review and meta-analysis.Clin. Breast Cancer2018183e305e32010.1016/j.clbc.2017.06.01128802529
    [Google Scholar]
  61. DietzelM. EllmannS. Schulz-WendtlandR. ClauserP. WenkelE. UderM. BaltzerP.A.T. Breast MRI in the era of diffusion weighted imaging: Do we still need signal-intensity time curves?Eur. Radiol.2020301475610.1007/s00330‑019‑06346‑x31359125
    [Google Scholar]
  62. PetraliaG. BonelloL. PrioloF. SummersP. BellomiM. Breast MR with special focus on DW-MRI and DCE-MRI.Cancer Imaging2011111769010.1102/1470‑7330.2011.001421771711
    [Google Scholar]
  63. NewittD.C. ZhangZ. GibbsJ.E. PartridgeS.C. ChenevertT.L. RosenM.A. BolanP.J. MarquesH.S. AliuS. LiW. CiminoL. JoeB.N. UmphreyH. Ojeda-FournierH. DoganB. OhK. AbeH. DrukteinisJ. EssermanL.J. HyltonN.M. Test–retest repeatability and reproducibility of ADC measures by breast DWI: Results from the ACRIN 6698 trial.J. Magn. Reson. Imaging20194961617162810.1002/jmri.2653930350329
    [Google Scholar]
  64. DorriusM.D. DijkstraH. OudkerkM. SijensP.E. Effect of b value and pre-admission of contrast on diagnostic accuracy of 1.5-T breast DWI: A systematic review and meta-analysis.Eur. Radiol.201424112835284710.1007/s00330‑014‑3338‑z25103535
    [Google Scholar]
  65. BognerW. GruberS. PinkerK. GrabnerG. StadlbauerA. WeberM. MoserE. HelbichT.H. TrattnigS. Diffusion-weighted MR for differentiation of breast lesions at 3.0 T: How does selection of diffusion protocols affect diagnosis?Radiology2009253234135110.1148/radiol.253208171819703869
    [Google Scholar]
  66. TamuraT. MurakamiS. NaitoK. YamadaT. FujimotoT. KikkawaT. Investigation of the optimal b-value to detect breast tumors with diffusion weighted imaging by 1.5-T MRI.Cancer Imaging20141411110.1186/1470‑7330‑14‑1125608450
    [Google Scholar]
  67. PereiraF.P.A. MartinsG. FigueiredoE. DominguesM.N.A. DominguesR.C. da FonsecaL.M.B. GasparettoE.L. Assessment of breast lesions with diffusion-weighted MRI: Comparing the use of different b values.AJR Am. J. Roentgenol.200919341030103510.2214/AJR.09.252219770326
    [Google Scholar]
  68. BaxterG.C. GravesM.J. GilbertF.J. PattersonA.J. A Meta-analysis of the Diagnostic Performance of Diffusion MRI for Breast Lesion Characterization.Radiology2019291363264110.1148/radiol.201918251031012817
    [Google Scholar]
  69. PadhaniA.R. LiuG. Mu-KohD. ChenevertT.L. ThoenyH.C. TakaharaT. Dzik-JuraszA. RossB.D. Van CauterenM. CollinsD. HammoudD.A. RustinG.J.S. TaouliB. ChoykeP.L. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: Consensus and recommendations.Neoplasia200911210212510.1593/neo.8132819186405
    [Google Scholar]
  70. IimaM. PartridgeS.C. Le BihanD. Six DWI questions you always wanted to know but were afraid to ask: Clinical relevance for breast diffusion MRI.Eur. Radiol.20203052561257010.1007/s00330‑019‑06648‑031965256
    [Google Scholar]
  71. BaltzerP. MannR.M. IimaM. SigmundE.E. ClauserP. GilbertF.J. MartincichL. PartridgeS.C. PattersonA. PinkerK. ThibaultF. Camps-HerreroJ. Le BihanD. Diffusion-weighted imaging of the breast—a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group.Eur. Radiol.20203031436145010.1007/s00330‑019‑06510‑331786616
    [Google Scholar]
  72. WielemaM. DorriusM.D. PijnappelR.M. De BockG.H. BaltzerP.A.T. OudkerkM. SijensP.E. Diagnostic performance of breast tumor tissue selection in diffusion weighted imaging: A systematic review and meta-analysis.PLoS One2020155e023285610.1371/journal.pone.023285632374781
    [Google Scholar]
  73. WielemaM. SijensP.E. DijkstraH. De BockG.H. van BruggenI.G. SiegersmaJ.E. LangiusE. PijnappelR.M. DorriusM.D. OudkerkM. Diffusion weighted imaging of the breast: Performance of standardized breast tumor tissue selection methods in clinical decision making.PLoS One2021161e024593010.1371/journal.pone.024593033493230
    [Google Scholar]
  74. SolomonE. NissanN. Furman-HaranE. SeginerA. Shapiro-FeinbergM. DeganiH. FrydmanL. Overcoming limitations in diffusion-weighted MRI of breast by spatio-temporal encoding.Magn. Reson. Med.20157362163217310.1002/mrm.2534425045867
    [Google Scholar]
  75. PinkerK. MoyL. SuttonE.J. MannR.M. WeberM. ThakurS.B. JochelsonM.S. Bago-HorvathZ. MorrisE.A. BaltzerP.A.T. HelbichT.H. Diffusion- Weighted imaging with apparent diffusion coefficient mapping for breast cancer detection as a stand-alone parameter: Comparison with dynamic contrast-enhanced and multiparametric magnetic resonance imaging.Invest. Radiol.2018531058759510.1097/RLI.000000000000046529620604
    [Google Scholar]
  76. PartridgeS.C. NissanN. RahbarH. KitschA.E. SigmundE.E. Diffusion-weighted breast MRI: Clinical applications and emerging techniques.J. Magn. Reson. Imaging201745233735510.1002/jmri.2547927690173
    [Google Scholar]
  77. BarthM. BreuerF. KoopmansP.J. NorrisD.G. PoserB.A. Simultaneous multislice (SMS) imaging techniques.Magn. Reson. Med.2016751638110.1002/mrm.2589726308571
    [Google Scholar]
  78. SetsompopK. GagoskiB.A. PolimeniJ.R. WitzelT. WedeenV.J. WaldL.L. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g -factor penalty.Magn. Reson. Med.20126751210122410.1002/mrm.2309721858868
    [Google Scholar]
  79. TaronJ. MartirosianP. KuestnerT. SchwenzerN.F. OthmanA. WeißJ. NotohamiprodjoM. NikolaouK. SchramlC. Scan time reduction in diffusion-weighted imaging of the pancreas using a simultaneous multislice technique with different acceleration factors: How fast can we go?Eur. Radiol.20182841504151110.1007/s00330‑017‑5132‑129134353
    [Google Scholar]
  80. BarentszM.W. TavianiV. ChangJ.M. IkedaD.M. MiyakeK.K. BanerjeeS. van den BoschM.A.A.J. HargreavesB.A. DanielB.L. Assessment of tumor morphology on diffusion-weighted (DWI) breast MRI: Diagnostic value of reduced field of view DWI.J. Magn. Reson. Imaging20154261656166510.1002/jmri.2492925914178
    [Google Scholar]
  81. TavianiV. AlleyM.T. BanerjeeS. NishimuraD.G. DanielB.L. VasanawalaS.S. HargreavesB.A. High-resolution diffusion-weighted imaging of the breast with multiband 2D radiofrequency pulses and a generalized parallel imaging reconstruction.Magn. Reson. Med.201777120922010.1002/mrm.2611026778549
    [Google Scholar]
  82. ParkJ.Y. ShinH.J. ShinK.C. SungY.S. ChoiW.J. ChaeE.Y. ChaJ.H. KimH.H. Comparison of readout segmented echo planar imaging (EPI) and EPI with reduced field-of-VIew diffusion-weighted imaging at 3t in patients with breast cancer.J. Magn. Reson. Imaging20154261679168810.1002/jmri.2494025946597
    [Google Scholar]
  83. ClauserP. MannR. AthanasiouA. ProschH. PinkerK. DietzelM. HelbichT.H. FuchsjägerM. Camps-HerreroJ. SardanelliF. ForraiG. BaltzerP.A.T. A survey by the European Society of Breast Imaging on the utilisation of breast MRI in clinical practice.Eur. Radiol.20182851909191810.1007/s00330‑017‑5121‑429168005
    [Google Scholar]
  84. IacconiC. GiannelliM. MariniC. CilottiA. MorettiM. ViacavaP. PicanoE. MichelottiA. CaramellaD. The role of mean diffusivity (MD) as a predictive index of the response to chemotherapy in locally advanced breast cancer: A preliminary study.Eur. Radiol.201020230330810.1007/s00330‑009‑1550‑z19760422
    [Google Scholar]
  85. ParkS.H. MoonW.K. ChoN. SongI.C. ChangJ.M. ParkI.A. HanW. NohD.Y. Diffusion-weighted MR imaging: Pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer.Radiology20102571566310.1148/radiol.1009202120851939
    [Google Scholar]
  86. ThoenyH.C. RossB.D. Predicting and monitoring cancer treatment response with diffusion-weighted MRI.J. Magn. Reson. Imaging201032121610.1002/jmri.2216720575076
    [Google Scholar]
  87. SharmaU. DanishadK.K.A. SeenuV. JagannathanN.R. Longitudinal study of the assessment by MRI and diffusion-weighted imaging of tumor response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy.NMR Biomed.200922110411310.1002/nbm.124518384182
    [Google Scholar]
  88. PicklesM.D. GibbsP. LowryM. TurnbullL.W. Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer.Magn. Reson. Imaging200624784384710.1016/j.mri.2005.11.00516916701
    [Google Scholar]
  89. WoodhamsR. KakitaS. HataH. IwabuchiK. KuranamiM. GautamS. HatabuH. KanS. MountfordC. Identification of residual breast carcinoma following neoadjuvant chemotherapy: Diffusion-weighted imaging--comparison with contrast-enhanced MR imaging and pathologic findings.Radiology2010254235736610.1148/radiol.254209040520093508
    [Google Scholar]
  90. D’OrsiC.J. SicklesE.A. MendelsonE.B. MorrisE.A. ACR BI- RADS® Atlas, Breast Imaging Reporting and Data System.Reston, VAAmerican College of Radiology2013
    [Google Scholar]
  91. Lo GulloR. SevilimeduV. BaltzerP. Le BihanD. Camps-HerreroJ. ClauserP. GilbertF.J. IimaM. MannR.M. PartridgeS.C. PattersonA. SigmundE.E. ThakurS. ThibaultF.E. MartincichL. PinkerK. A survey by the European Society of Breast Imaging on the implementation of breast diffusion-weighted imaging in clinical practice.Eur. Radiol.202232106588659710.1007/s00330‑022‑08833‑035507050
    [Google Scholar]
  92. PartridgeS.C. ZiadlooA. MurthyR. WhiteS.W. PeacockS. EbyP.R. DeMartiniW.B. LehmanC.D. Diffusion tensor MRI: Preliminary anisotropy measures and mapping of breast tumors.J. Magn. Reson. Imaging201031233934710.1002/jmri.2204520099346
    [Google Scholar]
  93. PartridgeS.C. MurthyR.S. ZiadlooA. WhiteS.W. AllisonK.H. LehmanC.D. Diffusion tensor magnetic resonance imaging of the normal breast.Magn. Reson. Imaging201028332032810.1016/j.mri.2009.10.00320061111
    [Google Scholar]
  94. YamaguchiK. NakazonoT. EgashiraR. KomoriY. NakamuraJ. NoguchiT. IrieH. Diagnostic Performance of Diffusion Tensor Imaging with Readout-segmented Echo-planar Imaging for Invasive Breast Cancer: Correlation of ADC and FA with Pathological Prognostic Markers.Magn. Reson. Med. Sci.201716324525210.2463/mrms.mp.2016‑003727853053
    [Google Scholar]
  95. JiangR. MaZ. DongH. SunS. ZengX. LiX. Diffusion tensor imaging of breast lesions: Evaluation of apparent diffusion coefficient and fractional anisotropy and tissue cellularity.Br. J. Radiol.20168910642016007610.1259/bjr.2016007627302492
    [Google Scholar]
  96. BaltzerP.A.T. SchäferA. DietzelM. GrässelD. GajdaM. CamaraO. KaiserW.A. Diffusion tensor magnetic resonance imaging of the breast: A pilot study.Eur. Radiol.201121111010.1007/s00330‑010‑1901‑920668860
    [Google Scholar]
  97. LuoJ. HippeD.S. RahbarH. ParsianS. RendiM.H. PartridgeS.C. Diffusion tensor imaging for characterizing tumor microstructure and improving diagnostic performance on breast MRI: A prospective observational study.Breast Cancer Res.201921110210.1186/s13058‑019‑1183‑331484577
    [Google Scholar]
  98. BokachevaL. KaplanJ.B. GiriD.D. PatilS. GnanasigamaniM. NymanC.G. DeasyJ.O. MorrisE.A. ThakurS.B. Intravoxel incoherent motion diffusion-weighted MRI at 3.0 T differentiates malignant breast lesions from benign lesions and breast parenchyma.J. Magn. Reson. Imaging201440481382310.1002/jmri.2446224273096
    [Google Scholar]
  99. ChoG.Y. MoyL. KimS.G. BaeteS.H. MoccaldiM. BabbJ.S. SodicksonD.K. SigmundE.E. Evaluation of breast cancer using intravoxel incoherent motion (IVIM) histogram analysis: Comparison with malignant status, histological subtype, and molecular prognostic factors.Eur. Radiol.20162682547255810.1007/s00330‑015‑4087‑326615557
    [Google Scholar]
  100. MaD. LuF. ZouX. ZhangH. LiY. ZhangL. ChenL. QinD. WangB. Intravoxel incoherent motion diffusion-weighted imaging as an adjunct to dynamic contrast-enhanced MRI to improve accuracy of the differential diagnosis of benign and malignant breast lesions.Magn. Reson. Imaging20173617517910.1016/j.mri.2016.10.00527742437
    [Google Scholar]
  101. LiuC. LiangC. LiuZ. ZhangS. HuangB. Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: Comparison with conventional DWI.Eur. J. Radiol.20138212e782e78910.1016/j.ejrad.2013.08.00624034833
    [Google Scholar]
  102. KimY. KoK. KimD. MinC. KimS.G. JooJ. ParkB. Intravoxel incoherent motion diffusion-weighted MR imaging of breast cancer: Association with histopathological features and subtypes.Br. J. Radiol.20168910632016014010.1259/bjr.2016014027197744
    [Google Scholar]
  103. ChoG.Y. GennaroL. SuttonE.J. ZaborE.C. ZhangZ. GiriD. MoyL. SodicksonD.K. MorrisE.A. SigmundE.E. ThakurS.B. Intravoxel incoherent motion (IVIM) histogram biomarkers for prediction of neoadjuvant treatment response in breast cancer patients.Eur. J. Radiol. Open2017410110710.1016/j.ejro.2017.07.00228856177
    [Google Scholar]
  104. IimaM. Perfusion-driven Intravoxel Incoherent Motion (IVIM) MRI in Oncology: Applications, Challenges, and Future Trends.Magn. Reson. Med. Sci.202120212513810.2463/mrms.rev.2019‑012432536681
    [Google Scholar]
  105. Le BihanD. What can we see with IVIM MRI?Neuroimage2019187566710.1016/j.neuroimage.2017.12.06229277647
    [Google Scholar]
  106. IimaM. KataokaM. KanaoS. KawaiM. OnishiN. KoyasuS. MurataK. OhashiA. SakaguchiR. TogashiK. Variability of non-Gaussian diffusion MRI and intravoxel incoherent motion (IVIM) measurements in the breast.PLoS One2018133e019344410.1371/journal.pone.019344429494639
    [Google Scholar]
  107. Le BihanD. IimaM. FederauC. SigmundE.E. Intravoxel incoherent motion (IVIM) MRI: Principles and applications.SingaporeJenny Stanford Publishing2018153310.1201/9780429427275
    [Google Scholar]
  108. IchikawaS. MotosugiU. HernandoD. MorisakaH. EnomotoN. MatsudaM. OnishiH. Histological grading of hepatocellular carcinomas with intravoxel incoherent motion diffusion-weighted imaging: Inconsistent results depending on the fitting method.Magn. Reson. Med. Sci.201817216817310.2463/mrms.mp.2017‑004728819085
    [Google Scholar]
  109. NogueiraL BrandaoS MatosE NunesRG LoureiroJ RamosI Application of the diffusion kurtosis model for the study of breast lesions.Eur Radiol201424119720310.1007/s00330‑014‑3146‑5
    [Google Scholar]
  110. JensenJ.H. HelpernJ.A. MRI quantification of non-Gaussian water diffusion by kurtosis analysis.NMR Biomed.201023769871010.1002/nbm.151820632416
    [Google Scholar]
  111. TangL. ZhouX.J. Diffusion MRI of cancer: From low to high b-values.J. Magn. Reson. Imaging2019491234010.1002/jmri.2629330311988
    [Google Scholar]
  112. LiZ. LiX. PengC. DaiW. HuangH. LiX. XieC. LiangJ. The diagnostic performance of diffusion kurtosis imaging in the characterization of breast tumors: A meta-analysis.Front. Oncol.20201057527210.3389/fonc.2020.57527233194685
    [Google Scholar]
  113. LiuW. WeiC. BaiJ. GaoX. ZhouL. Histogram analysis of diffusion kurtosis imaging in the differentiation of malignant from benign breast lesions.Eur. J. Radiol.201911715616310.1016/j.ejrad.2019.06.00831307642
    [Google Scholar]
  114. PalmT. WenkelE. OhlmeyerS. JankaR. UderM. WeilandE. BickelhauptS. LaddM.E. ZaitsevM. HenselB. LaunF.B. Diffusion kurtosis imaging does not improve differentiation performance of breast lesions in a short clinical protocol.Magn. Reson. Imaging20196320521610.1016/j.mri.2019.08.00731425816
    [Google Scholar]
  115. ParkV.Y. KimS.G. KimE.K. MoonH.J. YoonJ.H. KimM.J. Diffusional kurtosis imaging for differentiation of additional suspicious lesions on preoperative breast MRI of patients with known breast cancer.Magn. Reson. Imaging20196219920810.1016/j.mri.2019.07.01131323316
    [Google Scholar]
  116. WuJ. YanF. ChaiW. FuC. YanX. ZhanY. SunK. Breast cancer recurrence risk prediction using whole-lesion histogram analysis with diffusion kurtosis imaging.Clin. Radiol.2020753239.e1239.e810.1016/j.crad.2019.10.01531767139
    [Google Scholar]
  117. LiT. HongY. KongD. LiK. Histogram analysis of diffusion kurtosis imaging based on whole-volume images of breast lesions.J. Magn. Reson. Imaging202051262763410.1002/jmri.2688431385429
    [Google Scholar]
  118. BorlinhasF. ConceiçãoR.C. FerreiraH.A. Optimal b-values for diffusion kurtosis imaging in invasive ductal carcinoma versus ductal carcinoma in situ breast lesions.Australas. Phys. Eng. Sci. Med.201942387188510.1007/s13246‑019‑00773‑231321627
    [Google Scholar]
  119. HuangY. LinY. HuW. MaC. LinW. WangZ. LiangJ. YeW. ZhaoJ. WuR. Diffusion kurtosis at 3.0T as an in vivo imaging marker for breast cancer characterization: Correlation with prognostic factors.J. Magn. Reson. Imaging201949384585610.1002/jmri.2624930260589
    [Google Scholar]
  120. JensenJ.H. HelpernJ.A. RamaniA. LuH. KaczynskiK. Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging.Magn. Reson. Med.20055361432144010.1002/mrm.2050815906300
    [Google Scholar]
  121. SunK. ChenX. ChaiW. FeiX. FuC. YanX. ZhanY. ChenK. ShenK. YanF. Breast cancer: Diffusion kurtosis MR imaging—diagnostic accuracy and correlation with clinical-pathologic factors.Radiology20152771465510.1148/radiol.1514162525938679
    [Google Scholar]
  122. BolanP.J. NelsonM.T. YeeD. GarwoodM. Imaging in breast cancer: Magnetic resonance spectroscopy.Breast Cancer Res.20057414915210.1186/bcr120215987466
    [Google Scholar]
  123. BolanP.J. Magnetic resonance spectroscopy of the breast: Current status.Magn. Reson. Imaging Clin. N. Am.201321362563910.1016/j.mric.2013.04.00823928249
    [Google Scholar]
  124. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  125. BartellaL. HuangW. Proton (1H) MR spectroscopy of the breast.Radiographics200727Suppl. 1S241S25210.1148/rg.27si07550418180230
    [Google Scholar]
  126. PinkerK. StadlbauerA. BognerW. GruberS. HelbichT.H. Molecular imaging of cancer: MR spectroscopy and beyond.Eur. J. Radiol.201281356657710.1016/j.ejrad.2010.04.02820554145
    [Google Scholar]
  127. SardanelliF. FaustoA. PodoF. MR spectroscopy of the breast.Radiol. Med. (Torino)20081131566410.1007/s11547‑008‑0228‑y18338127
    [Google Scholar]
  128. BaltzerP.A.T. DietzelM. Breast lesions: Diagnosis by using proton MR spectroscopy at 1.5 and 3.0 T--systematic review and meta-analysis.Radiology2013267373574610.1148/radiol.1312185623468577
    [Google Scholar]
  129. MontemezziS. CavedonC. CameraL. MeliadòG. CaumoF. BaglioI. SardanelliF. 1H-MR spectroscopy of suspicious breast mass lesions at 3T: A clinical experience.Radiol. Med. (Torino)2017122316117010.1007/s11547‑016‑0713‑727981485
    [Google Scholar]
  130. JagannathanN.R. KumarM. SeenuV. CoshicO. DwivediS.N. JulkaP.K. SrivastavaA. RathG.K. Evaluation of total choline from in-vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer.Br. J. Cancer20018481016102210.1054/bjoc.2000.171111308247
    [Google Scholar]
  131. MeisamyS. BolanP.J. BakerE.H. BlissR.L. GulbahceE. EversonL.I. NelsonM.T. EmoryT.H. TuttleT.M. YeeD. GarwoodM. Neoadjuvant chemotherapy of locally advanced breast cancer: Predicting response with in vivo (1)H MR spectroscopy--a pilot study at 4 T.Radiology2004233242443110.1148/radiol.233203128515516615
    [Google Scholar]
  132. BolanP.J. KimE. HermanB.A. NewsteadG.M. RosenM.A. SchnallM.D. PisanoE.D. WeatherallP.T. MorrisE.A. LehmanC.D. GarwoodM. NelsonM.T. YeeD. PolinS.M. EssermanL.J. GatsonisC.A. MetzgerG.J. NewittD.C. PartridgeS.C. HyltonN.M. MR spectroscopy of breast cancer for assessing early treatment response: Results from the ACRIN 6657 MRS trial.J. Magn. Reson. Imaging201746129030210.1002/jmri.2556027981651
    [Google Scholar]
  133. FardaneshR. MarinoM.A. AvendanoD. LeithnerD. PinkerK. ThakurS.B. Proton MR spectroscopy in the breast: Technical innovations and clinical applications.J. Magn. Reson. Imaging20195041033104610.1002/jmri.2670030848037
    [Google Scholar]
  134. ThakurS.B. BrennanS.B. IshillN.M. MorrisE.A. LibermanL. DershawD.D. BartellaL. KoutcherJ.A. HuangW. Diagnostic usefulness of water-to-fat ratio and choline concentration in malignant and benign breast lesions and normal breast parenchyma: An in vivo 1 H MRS study.J. Magn. Reson. Imaging201133485586310.1002/jmri.2249321448950
    [Google Scholar]
  135. ThakurS.B. HorvatJ.V. HancuI. SuttonO.M. Bernard-DavilaB. WeberM. OhJ.H. MarinoM.A. AvendanoD. LeithnerD. BrennanS. GiriD. ManderskiE. MorrisE.A. PinkerK. Quantitative in vivo proton MR spectroscopic assessment of lipid metabolism: Value for breast cancer diagnosis and prognosis.J. Magn. Reson. Imaging201950123924910.1002/jmri.26622
    [Google Scholar]
  136. KaggieJ.D. HadleyJ.R. BadalJ. CampbellJ.R. ParkD.J. ParkerD.L. MorrellG. NewbouldR.D. WoodA.F. BangerterN.K. A 3 T sodium and proton composite array breast coil.Magn. Reson. Med.20147162231224210.1002/mrm.2486024105740
    [Google Scholar]
  137. OuwerkerkR. JacobsM.A. MacuraK.J. WolffA.C. StearnsV. MezbanS.D. KhouriN.F. BluemkeD.A. BottomleyP.A. Elevated tissue sodium concentration in malignant breast lesions detected with non-invasive 23Na MRI.Breast Cancer Res. Treat.2007106215116010.1007/s10549‑006‑9485‑417260093
    [Google Scholar]
  138. ZaricO. PinkerK. ZbynS. StrasserB. RobinsonS. MinarikovaL. GruberS. FarrA. SingerC. HelbichT.H. TrattnigS. BognerW. Quantitative sodium mr imaging at 7 T: Initial results and comparison with diffusion-weighted imaging in patients with breast tumors.Radiology20162801394810.1148/radiol.201615130427007803
    [Google Scholar]
  139. PodoF. Tumour phospholipid metabolism.NMR Biomed.199912741343910.1002/(SICI)1099‑1492(199911)12:7<413::AID‑NBM587>3.0.CO;2‑U10654290
    [Google Scholar]
  140. KlompD.W.J. van de BankB.L. RaaijmakersA. KortewegM.A. PossanziniC. BoerV.O. van de BergC.A.T. van de BoschM.A.A.J. LuijtenP.R. 31 P MRSI and 1 H MRS at 7 T: Initial results in human breast cancer.NMR Biomed.201124101337134210.1002/nbm.169621433156
    [Google Scholar]
  141. WijnenJ.P. van der KempW.J.M. LuttjeM.P. KortewegM.A. LuijtenP.R. KlompD.W.J. Quantitative 31 P magnetic resonance spectroscopy of the human breast at 7 T.Magn. Reson. Med.201268233934810.1002/mrm.2324922213214
    [Google Scholar]
  142. SchmittB. TrattnigS. SchlemmerH.P. CEST-imaging: A new contrast in MR-mammography by means of chemical exchange saturation transfer.Eur. J. Radiol.201281Suppl. 1S144S14610.1016/S0720‑048X(12)70060‑823083567
    [Google Scholar]
  143. SchmittB. ZamecnikP. ZaißM. RerichE. SchusterL. BachertP. SchlemmerH.P. A new contrast in MR mammography by means of chemical exchange saturation transfer (CEST) imaging at 3 Tesla: Preliminary results.Röfo Fortschr. Geb. Röntgenstr. Neuen Bildgeb. Verfahr.2011183111030103610.1055/s‑0031‑128176422034086
    [Google Scholar]
  144. NasrallahF.A. PagèsG. KuchelP.W. GolayX. ChuangK.H. Imaging brain deoxyglucose uptake and metabolism by glucoCEST MRI.J. Cereb. Blood Flow Metab.20133381270127810.1038/jcbfm.2013.7923673434
    [Google Scholar]
  145. RuanK. SongG. OuyangG. Role of hypoxia in the hallmarks of human cancer.J. Cell. Biochem.200910761053106210.1002/jcb.2221419479945
    [Google Scholar]
  146. O’FlynnE.A.M. deSouzaN.M. Functional magnetic resonance: Biomarkers of response in breast cancer.Breast Cancer Res.201113120410.1186/bcr281521392409
    [Google Scholar]
  147. Rakow-PennerR. DanielB. GloverG.H. Detecting blood oxygen level-dependent (BOLD) contrast in the breast.J. Magn. Reson. Imaging201032112012910.1002/jmri.2222720578018
    [Google Scholar]
  148. BrindleK.M. BohndiekS.E. GallagherF.A. KettunenM.I. Tumor imaging using hyperpolarized 13 C magnetic resonance spectroscopy.Magn. Reson. Med.201166250551910.1002/mrm.2299921661043
    [Google Scholar]
  149. AlbersM.J. BokR. ChenA.P. CunninghamC.H. ZierhutM.L. ZhangV.Y. KohlerS.J. TroppJ. HurdR.E. YenY.F. NelsonS.J. VigneronD.B. KurhanewiczJ. Hyperpolarized 13C lactate, pyruvate, and alanine: Noninvasive biomarkers for prostate cancer detection and grading.Cancer Res.200868208607861510.1158/0008‑5472.CAN‑08‑074918922937
    [Google Scholar]
  150. Asghar ButtS. SøgaardL.V. Ardenkjaer-LarsenJ.H. LauritzenM.H. EngelholmL.H. PaulsonO.B. MirzaO. HolckS. MagnussonP. ÅkesonP. Monitoring mammary tumor progression and effect of tamoxifen treatment in MMTV-PymT using MRI and magnetic resonance spectroscopy with hyperpolarized [1- 13 C]pyruvate.Magn. Reson. Med.2015731515810.1002/mrm.2509524435823
    [Google Scholar]
  151. Deike-HofmannK. KoenigF. PaechD. DreherC. DelormeS. SchlemmerH.P. BickelhauptS. Abbreviated MRI Protocols in Breast Cancer Diagnostics.J. Magn. Reson. Imaging201949364765810.1002/jmri.2652530328180
    [Google Scholar]
  152. HellerS.L. MoyL. MRI breast screening revisited.J. Magn. Reson. Imaging20194951212122110.1002/jmri.2654730693603
    [Google Scholar]
  153. BaltzerP.A.T. BickelH. SpickC. WengertG. WoitekR. KapetasP. ClauserP. HelbichT.H. PinkerK. Potential of noncontrast magnetic resonance imaging with diffusion-weighted imaging in characterization of breast lesions: Intraindividual comparison with dynamic contrast- enhanced magnetic resonance imaging.Invest. Radiol.201853422923510.1097/RLI.000000000000043329190227
    [Google Scholar]
  154. McDonaldE.S. HammersleyJ.A. ChouS.H.S. RahbarH. ScheelJ.R. LeeC.I. LiuC.L. LehmanC.D. PartridgeS.C. Performance of DWI as a rapid unenhanced technique for detecting mammographically occult breast cancer in elevated-risk women with dense breasts.AJR Am. J. Roentgenol.2016207120521610.2214/AJR.15.1587327077731
    [Google Scholar]
  155. BuY. XiaJ. JosephB. ZhaoX. XuM. YuY. QiS. ShahK.A. WangS. HuJ. Non-contrast MRI for breast screening: Preliminary study on detectability of benign and malignant lesions in women with dense breasts.Breast Cancer Res. Treat.2019177362963910.1007/s10549‑019‑05342‑531325074
    [Google Scholar]
  156. LiaoG.J. Henze BancroftL.C. StrigelR.M. ChitaliaR.D. KontosD. MoyL. PartridgeS.C. RahbarH. Background parenchymal enhancement on breast MRI: A comprehensive review.J. Magn. Reson. Imaging2020511436110.1002/jmri.2676231004391
    [Google Scholar]
  157. MorrisE.A. ComstockC.E. LeeC.H. ACR BI-RADS® Magnetic Resonance Imaging.ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System.Reston, VAAmerican College of Radiology2013
    [Google Scholar]
  158. JansenS.A. ShimauchiA. ZakL. FanX. KarczmarG.S. NewsteadG.M. The diverse pathology and kinetics of mass, nonmass, and focus enhancement on MR imaging of the breast.J. Magn. Reson. Imaging20113361382138910.1002/jmri.2256721591007
    [Google Scholar]
  159. GutierrezR.L. DeMartiniW.B. EbyP.R. KurlandB.F. PeacockS. LehmanC.D. BI-RADS lesion characteristics predict likelihood of malignancy in breast MRI for masses but not for nonmasslike enhancement.AJR Am. J. Roentgenol.20091934994100010.2214/AJR.08.198319770321
    [Google Scholar]
  160. SungJ.S. JochelsonM.S. BrennanS. JooS. WenY.H. MoskowitzC. ZhengJ. DershawD.D. MorrisE.A. MR imaging features of triple-negative breast cancers.Breast J.201319664364910.1111/tbj.1218224015869
    [Google Scholar]
  161. BitencourtA.G.V. GrazianoL. OsórioC.A.B.T. GuatelliC.S. SouzaJ.A. MendonçaM.H.S. MarquesE.F. MRI Features of Mucinous Cancer of the Breast: Correlation With Pathologic Findings and Other Imaging Methods.AJR Am. J. Roentgenol.2016206223824610.2214/AJR.15.1485126797349
    [Google Scholar]
  162. ChikarmaneS.A. MichaelsA.Y. GiessC.S. Revisiting nonmass enhancement in breast MRI: Analysis of outcomes and follow-up using the updated BI-RADS atlas.AJR Am. J. Roentgenol.201720951178118410.2214/AJR.17.1808628834447
    [Google Scholar]
  163. AydinH. The MRI characteristics of non-mass enhancement lesions of the breast: Associations with malignancy.Br. J. Radiol.20199210962018046410.1259/bjr.2018046430673299
    [Google Scholar]
  164. DietzelM. BaltzerP.A.T. How to use the Kaiser score as a clinical decision rule for diagnosis in multiparametric breast MRI: A pictorial essay.Insights Imaging20189332533510.1007/s13244‑018‑0611‑829616496
    [Google Scholar]
  165. MarinoM.A. ClauserP. WoitekR. WengertG.J. KapetasP. BernathovaM. Pinker-DomenigK. HelbichT.H. PreidlerK. BaltzerP.A.T. A simple scoring system for breast MRI interpretation: Does it compensate for reader experience?Eur. Radiol.20162682529253710.1007/s00330‑015‑4075‑726511631
    [Google Scholar]
  166. BaltzerP.A.T. DietzelM. KaiserW.A. A simple and robust classification tree for differentiation between benign and malignant lesions in MR-mammography.Eur. Radiol.20132382051206010.1007/s00330‑013‑2804‑323579418
    [Google Scholar]
  167. MilosR.I. PipanF. KalovidouriA. ClauserP. KapetasP. BernathovaM. HelbichT.H. BaltzerP.A.T. The Kaiser score reliably excludes malignancy in benign contrast-enhancing lesions classified as BI-RADS 4 on breast MRI high-risk screening exams.Eur. Radiol.202030116052606110.1007/s00330‑020‑06945‑z32504098
    [Google Scholar]
  168. HouserM. BarretoD. MehtaA. BremR.F. Current and Future Directions of Breast MRI.J. Clin. Med.20211023566810.3390/jcm1023566834884370
    [Google Scholar]
  169. LeeJ.M. AbrahamL. LamD.L. BuistD.S.M. KerlikowskeK. MigliorettiD.L. HoussamiN. LehmanC.D. HendersonL.M. HubbardR.A. Cumulative risk distribution for interval invasive second breast cancers after negative surveillance mammography.J. Clin. Oncol.201836202070207710.1200/JCO.2017.76.826729718790
    [Google Scholar]
  170. YooE.Y. NamS.Y. ChoiH.Y. HongM.J. Agreement between MRI and pathologic analyses for determination of tumor size and correlation with immunohistochemical factors of invasive breast carcinoma.Acta Radiol.2018591505710.1177/028418511770501028425758
    [Google Scholar]
  171. MannR.M. HoogeveenY.L. BlickmanJ.G. BoetesC. MRI compared to conventional diagnostic work-up in the detection and evaluation of invasive lobular carcinoma of the breast: A review of existing literature.Breast Cancer Res. Treat.2008107111410.1007/s10549‑007‑9528‑518043894
    [Google Scholar]
  172. KarlssonA. GonzalezV. JarajS.J. BottaiM. SandelinK. ArverB. ErikssonS. The accuracy of incremental pre-operative breast MRI findings – Concordance with histopathology in the Swedish randomized multicenter POMB trial.Eur. J. Radiol.201911418519110.1016/j.ejrad.2019.03.00531005171
    [Google Scholar]
  173. HoussamiN. CiattoS. MacaskillP. LordS.J. WarrenR.M. DixonJ.M. IrwigL. Accuracy and surgical impact of magnetic resonance imaging in breast cancer staging: Systematic review and meta-analysis in detection of multifocal and multicentric cancer.J. Clin. Oncol.200826193248325810.1200/JCO.2007.15.210818474876
    [Google Scholar]
  174. HoussamiN. TurnerR.M. MorrowM. Meta-analysis of pre-operative magnetic resonance imaging (MRI) and surgical treatment for breast cancer.Breast Cancer Res. Treat.2017165227328310.1007/s10549‑017‑4324‑328589366
    [Google Scholar]
  175. SardanelliF. TrimboliR.M. HoussamiN. GilbertF.J. HelbichT.H. Alvarez BenitoM. BalleyguierC. BazzocchiM. BultP. CalabreseM. Camps HerreroJ. CartiaF. CassanoE. ClauserP. de AndradeD.A. de Lima DocemaM.F. DeprettoC. ForraiG. GiromettiR. HarmsS.E. HilborneS. IenziR. LobbesM.B.I. LosioC. MannR.M. MontemezziS. ObdeijnI.M. OzcanU.A. PediconiF. PreibschH. Raya-PovedanoJ.L. SacchettoD. ScaperrottaG.P. SchloozM. SzaboB.K. UlusO.S. TaylorD.B. Van GoethemM. VeltmanJ. WeigelS. WenkelE. ZuianiC. Di LeoG. Solving the preoperative breast MRI conundrum: Design and protocol of the MIPA study.Eur. Radiol.202030105427543610.1007/s00330‑020‑06824‑732377813
    [Google Scholar]
  176. SardanelliF. TrimboliR.M. HoussamiN. GilbertF.J. HelbichT.H. Álvarez BenitoM. BalleyguierC. BazzocchiM. BultP. CalabreseM. Camps HerreroJ. CartiaF. CassanoE. ClauserP. CozziA. de AndradeD.A. de Lima DocemaM.F. DeprettoC. DominelliV. ForraiG. GiromettiR. HarmsS.E. HilborneS. IenziR. LobbesM.B.I. LosioC. MannR.M. MontemezziS. ObdeijnI.M. OzcanU.A. PediconiF. PinkerK. PreibschH. Raya PovedanoJ.L. SacchettoD. ScaperrottaG.P. SchiaffinoS. SchloozM. SzabóB.K. TaylorD.B. UlusÖ.S. Van GoethemM. VeltmanJ. WeigelS. WenkelE. ZuianiC. Di LeoG. Magnetic resonance imaging before breast cancer surgery: Results of an observational multicenter international prospective analysis (MIPA).Eur. Radiol.2022323161123Epub ahead of print34643778
    [Google Scholar]
  177. SaslowD. BoetesC. BurkeW. HarmsS. LeachM.O. LehmanC.D. MorrisE. PisanoE. SchnallM. SenerS. SmithR.A. WarnerE. YaffeM. AndrewsK.S. RussellC.A. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography.CA Cancer J. Clin.2007572758910.3322/canjclin.57.2.7517392385
    [Google Scholar]
  178. MonticcioloDL NewellMS MoyL NiellB MonseesB SicklesEA Breast cancer screening in women at higher-than-average risk: recommendations from the ACR.J Am Coll Radiol2018153,3 Pt A408414
    [Google Scholar]
  179. KriegeM. BrekelmansC.T.M. BoetesC. BesnardP.E. ZonderlandH.M. ObdeijnI.M. ManoliuR.A. KokT. PeterseH. Tilanus-LinthorstM.M.A. MullerS.H. MeijerS. OosterwijkJ.C. BeexL.V.A.M. TollenaarR.A.E.M. de KoningH.J. RutgersE.J.T. KlijnJ.G.M. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition.N. Engl. J. Med.2004351542743710.1056/NEJMoa03175915282350
    [Google Scholar]
  180. LoG. ScaraneloA.M. AborasH. GhaiS. KulkarniS. FlemingR. BukhanovK. CrystalP. Evaluation of the Utility of Screening Mammography for High-Risk Women Undergoing Screening Breast MR Imaging.Radiology20172851364310.1148/radiol.201716110328586291
    [Google Scholar]
  181. SippoD.A. BurkK.S. MercaldoS.F. RutledgeG.M. EdmondsC. GuanZ. HughesK.S. LehmanC.D. Performance of Screening Breast MRI across Women with Different Elevated Breast Cancer Risk Indications.Radiology20192921515910.1148/radiol.201918113631063080
    [Google Scholar]
  182. TieuM.T. CigsarC. AhmedS. NgA. DillerL. MillarB.A. CrystalP. HodgsonD.C. Breast cancer detection among young survivors of pediatric Hodgkin lymphoma with screening magnetic resonance imaging.Cancer2014120162507251310.1002/cncr.2874724888639
    [Google Scholar]
  183. FreitasV. ScaraneloA. MenezesR. KulkarniS. HodgsonD. CrystalP. Added cancer yield of breast magnetic resonance imaging screening in women with a prior history of chest radiation therapy.Cancer2013119349550310.1002/cncr.2777122952042
    [Google Scholar]
  184. PhiX.A. SaadatmandS. De BockG.H. WarnerE. SardanelliF. LeachM.O. RiedlC.C. TropI. HooningM.J. MandelR. SantoroF. Kwan-LimG. HelbichT.H. Tilanus-LinthorstM.M.A. van den HeuvelE.R. HoussamiN. Contribution of mammography to MRI screening in BRCA mutation carriers by BRCA status and age: Individual patient data meta-analysis.Br. J. Cancer2016114663163710.1038/bjc.2016.3226908327
    [Google Scholar]
  185. VreemannS. van ZelstJ.C.M. Schlooz-VriesM. BultP. HoogerbruggeN. KarssemeijerN. Gubern-MéridaA. MannR.M. The added value of mammography in different age-groups of women with and without BRCA mutation screened with breast MRI.Breast Cancer Res.20182018410.1186/s13058‑018‑1019‑630075794
    [Google Scholar]
  186. ObdeijnI.M. Winter-WarnarsG.A.O. MannR.M. HooningM.J. HuninkM.G.M. Tilanus-LinthorstM.M.A. Should we screen BRCA1 mutation carriers only with MRI? A multicenter study.Breast Cancer Res. Treat.2014144357758210.1007/s10549‑014‑2888‑824567197
    [Google Scholar]
  187. BahlM. Screening MRI in women at intermediate breast cancer risk: An update of the recent literature.J. Breast Imaging20224323124010.1093/jbi/wbac02135783682
    [Google Scholar]
  188. PortE.R. ParkA. BorgenP.I. MorrisE. MontgomeryL.L. Results of MRI screening for breast cancer in high-risk patients with LCIS and atypical hyperplasia.Ann. Surg. Oncol.20071431051105710.1245/s10434‑006‑9195‑517206485
    [Google Scholar]
  189. SungJ.S. MalakS.F. BajajP. AlisR. DershawD.D. MorrisE.A. Screening breast MR imaging in women with a history of lobular carcinoma in situ.Radiology2011261241442010.1148/radiol.1111009121900617
    [Google Scholar]
  190. ChikarmaneS.A. GiessC.S. Screening breast MRI in patients with history of atypia or lobular neoplasia.Breast J.201925348448710.1111/tbj.1325930972867
    [Google Scholar]
  191. ParkV.Y. KimM.J. KimG.R. YoonJ.H. Outcomes following neg- ative screening MRI results in Korean women with a personal history of breast cancer: Implications for the next MRI interval.Radiology2021300230331110.1148/radiol.202120421734032514
    [Google Scholar]
  192. StrigelR.M. RollenhagenJ. BurnsideE.S. ElezabyM. FowlerA.M. KelczF. SalkowskiL. DeMartiniW.B. Screening breast MRI outcomes in routine clinical practice: Comparison to BI-RADS benchmarks.Acad. Radiol.201724441141710.1016/j.acra.2016.10.01427986508
    [Google Scholar]
  193. TadrosA. ArditiB. WeltzC. PortE. MargoliesL.R. SchmidtH. Utility of surveillance MRI in women with a personal history of breast cancer.Clin. Imaging201746333610.1016/j.clinimag.2017.06.00728700966
    [Google Scholar]
  194. LiuH. HuaY. PengW. ZhangX. Surveillance magnetic reso- nance imaging in detecting the second breast cancer in women with a personal history of breast cancer.J. Comput. Assist. Tomogr.201943693794210.1097/RCT.000000000000093131738203
    [Google Scholar]
  195. LiT. SunL. MillerN. NickleeT. WooJ. Hulse-SmithL. TsaoM.S. KhokhaR. MartinL. BoydN. The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer.Cancer Epidemiol. Biomarkers Prev.200514234334910.1158/1055‑9965.EPI‑04‑049015734956
    [Google Scholar]
  196. HawesD DowneyS PearceCL BartowS WanP PikeMC WuAH Dense breast stromal tissue shows greatly increased concentration of breast epithelium but no increase in its proliferative activity.200610.1186/bcr1408
    [Google Scholar]
  197. AlowamiS. TroupS. Al-HaddadS. KirkpatrickI. WatsonP.H. Mammographic density is related to stroma and stromal proteoglycan expression.Breast Cancer Res.200355R129R13510.1186/bcr62212927043
    [Google Scholar]
  198. CarneyP.A. MigliorettiD.L. YankaskasB.C. KerlikowskeK. RosenbergR. RutterC.M. GellerB.M. AbrahamL.A. TaplinS.H. DignanM. CutterG. Ballard-BarbashR. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography.Ann. Intern. Med.2003138316817510.7326/0003‑4819‑138‑3‑200302040‑0000812558355
    [Google Scholar]
  199. BoydN.F. GuoH. MartinL.J. SunL. StoneJ. FishellE. JongR.A. HislopG. ChiarelliA. MinkinS. YaffeM.J. Mammographic density and the risk and detection of breast cancer.N. Engl. J. Med.2007356322723610.1056/NEJMoa06279017229950
    [Google Scholar]
  200. MandelsonM.T. OestreicherN. PorterP.L. WhiteD. FinderC.A. TaplinS.H. WhiteE. Breast density as a predictor of mammographic detection: Comparison of interval- and screen-detected cancers.J. Natl. Cancer Inst.200092131081108710.1093/jnci/92.13.108110880551
    [Google Scholar]
  201. FletcherS.W. ElmoreJ.G. Clinical practice. Mammographic screening for breast cancer.N. Engl. J. Med.2003348171672168010.1056/NEJMcp02180412711743
    [Google Scholar]
  202. WolfeJN Risk for breast cancer development determined by mam- mographic parenchymal patternCancer1976372248692
    [Google Scholar]
  203. WolfeJ.N. Breast patterns as an index of risk for developing breast cancer.AJR Am. J. Roentgenol.197612661130113710.2214/ajr.126.6.1130179369
    [Google Scholar]
  204. McCormackV.A. dos Santos SilvaI. Breast density and parenchymal patterns as markers of breast cancer risk: A meta-analysis.Cancer Epidemiol. Biomarkers Prev.20061561159116910.1158/1055‑9965.EPI‑06‑003416775176
    [Google Scholar]
  205. BoydN.F. ByngJ.W. JongR.A. FishellE.K. LittleL.E. MillerA.B. LockwoodG.A. TritchlerD.L. YaffeM.J. Quantitative classification of mammographic densities and breast cancer risk: Results from the Canadian National Breast Screening Study.J. Natl. Cancer Inst.199587967067510.1093/jnci/87.9.6707752271
    [Google Scholar]
  206. MelnikowJ. FentonJ.J. WhitlockE.P. MigliorettiD.L. WeyrichM.S. ThompsonJ.H. ShahK. Supplemental screening for breast cancer in women with dense breasts: A systematic review for the U.S. preventive services task force.Ann. Intern. Med.2016164426827810.7326/M15‑178926757021
    [Google Scholar]
  207. ZhangZ. ZhangZ. LehrerD. JongR.A. PisanoE.D. BarrR.G. Böhm-VélezM. MahoneyM.C. EvansW.P.III LarsenL.H. MortonM.J. MendelsonE.B. FarriaD.M. CormackJ.B. MarquesH.S. AdamsA. YehN.M. GabrielliG. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk.JAMA2012307131394140410.1001/jama.2012.38822474203
    [Google Scholar]
  208. RatushnyakS. HoogendoornM. van BaalP.H.M. Cost-effectiveness of cancer screening: Health and costs in life years gained.Am. J. Prev. Med.201957679279910.1016/j.amepre.2019.07.02731753260
    [Google Scholar]
  209. GeuzingeH.A. BakkerM.F. HeijnsdijkE.A.M. Cost- effectiveness of MRI screening for women with extremely dense breast tissue.J. Natl. Cancer Inst.2021113111476148310.1093/jnci/djab11934585249
    [Google Scholar]
  210. MannR.M. AthanasiouA. BaltzerP.A.T. Camps-HerreroJ. ClauserP. FallenbergE.M. ForraiG. FuchsjägerM.H. HelbichT.H. Killburn-ToppinF. LesaruM. PanizzaP. PediconiF. PijnappelR.M. PinkerK. SardanelliF. SellaT. Thomassin-NaggaraI. ZackrissonS. GilbertF.J. KuhlC.K. Breast cancer screening in women with extremely dense breasts recommendations of the European Society of Breast Imaging (EUSOBI).Eur. Radiol.20223264036404510.1007/s00330‑022‑08617‑635258677
    [Google Scholar]
  211. MarinovichM.L. HoussamiN. MacaskillP. SardanelliF. IrwigL. MamounasE.P. von MinckwitzG. BrennanM.E. CiattoS. Meta-analysis of magnetic resonance imaging in detecting residual breast cancer after neoadjuvant therapy.J. Natl. Cancer Inst.2013105532133310.1093/jnci/djs52823297042
    [Google Scholar]
  212. ScheelJ.R. KimE. PartridgeS.C. LehmanC.D. RosenM.A. BernreuterW.K. PisanoE.D. MarquesH.S. MorrisE.A. WeatherallP.T. PolinS.M. NewsteadG.M. EssermanL.J. SchnallM.D. HyltonN.M. MRI, clinical examination, and mammography for preoperative assessment of residual disease and pathologic complete response after neoadjuvant chemotherapy for breast cancer: ACRIN 6657 trial.AJR Am. J. Roentgenol.201821061376138510.2214/AJR.17.1832329708782
    [Google Scholar]
  213. CroshawR. Shapiro-WrightH. SvenssonE. ErbK. JulianT. Accuracy of clinical examination, digital mammogram, ultrasound, and MRI in determining postneoadjuvant pathologic tumor response in operable breast cancer patients.Ann. Surg. Oncol.201118113160316310.1245/s10434‑011‑1919‑521947594
    [Google Scholar]
  214. SheikhbahaeiS. TrahanT.J. XiaoJ. TaghipourM. MenaE. ConnollyR.M. SubramaniamR.M. FDG-PET/CT and MRI for Evaluation of Pathologic Response to Neoadjuvant Chemotherapy in Patients With Breast Cancer: A Meta-Analysis of Diagnostic Accuracy Studies.Oncologist201621893193910.1634/theoncologist.2015‑035327401897
    [Google Scholar]
  215. MukhtarR.A. YauC. RosenM. TandonV.J. HyltonN. EssermanL.J. Clinically meaningful tumor reduction rates vary by prechemotherapy MRI phenotype and tumor subtype in the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657).Ann. Surg. Oncol.201320123823383010.1245/s10434‑013‑3038‑y23780381
    [Google Scholar]
  216. NegrãoE.M.S. SouzaJ.A. MarquesE.F. BitencourtA.G.V. Breast cancer phenotype influences MRI response evaluation after neoadjuvant chemotherapy.Eur. J. Radiol.201912010870110.1016/j.ejrad.2019.10870131610321
    [Google Scholar]
  217. DenisF. Desbiez-BourcierA.V. ChapironC. ArbionF. BodyG. BrunereauL. Contrast enhanced magnetic resonance imaging underestimates residual disease following neoadjuvant docetaxel based chemotherapy for breast cancer.Eur. J. Surg. Oncol.200430101069107610.1016/j.ejso.2004.07.02415522553
    [Google Scholar]
  218. SchradingS. KuhlC.K. Breast Cancer: Influence of Taxanes on Response Assessment with Dynamic Contrast-enhanced MR Imaging.Radiology2015277368769610.1148/radiol.201515000626176656
    [Google Scholar]
  219. ChenJ.H. BahriS. MehtaR.S. CarpenterP.M. McLarenC.E. ChenW.P. FwuP.T. HsiangD.J.B. LaneK.T. ButlerJ.A. SuM.Y. Impact of factors affecting the residual tumor size diagnosed by MRI following neoadjuvant chemotherapy in comparison to pathology.J. Surg. Oncol.2014109215816710.1002/jso.2347024166728
    [Google Scholar]
  220. ReigB. LewinA.A. DuL. HeacockL. TothH.K. HellerS.L. GaoY. MoyL. Breast MRI for Evaluation of Response to Neoadjuvant Therapy.Radiographics202141366567910.1148/rg.202120013433939542
    [Google Scholar]
  221. EisenhauerE.A. TherasseP. BogaertsJ. SchwartzL.H. SargentD. FordR. DanceyJ. ArbuckS. GwytherS. MooneyM. RubinsteinL. ShankarL. DoddL. KaplanR. LacombeD. VerweijJ. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1).Eur. J. Cancer200945222824710.1016/j.ejca.2008.10.02619097774
    [Google Scholar]
  222. Ah-SeeM.L.W. MakrisA. TaylorN.J. HarrisonM. RichmanP.I. BurcombeR.J. StirlingJ.J. d’ArcyJ.A. CollinsD.J. PittamM.R. RavichandranD. PadhaniA.R. Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer.Clin. Cancer Res.200814206580658910.1158/1078‑0432.CCR‑07‑431018927299
    [Google Scholar]
  223. DoganB.E. YuanQ. BassettR. GuvencI. JacksonE.F. CristofanilliM. WhitmanG.J. Comparing the performances of magnetic resonance imaging size vs pharmacokinetic parameters to predict response to neoadjuvant chemotherapy and survival in patients with breast cancer.Curr. Probl. Diagn. Radiol.201948323524010.1067/j.cpradiol.2018.03.00329685400
    [Google Scholar]
  224. PartridgeS.C. ZhangZ. NewittD.C. GibbsJ.E. ChenevertT.L. RosenM.A. BolanP.J. MarquesH.S. RomanoffJ. CiminoL. JoeB.N. UmphreyH.R. Ojeda-FournierH. DoganB. OhK. AbeH. DrukteinisJ.S. EssermanL.J. HyltonN.M. Diffusion-weighted MRI findings predict pathologic response in neoadjuvant treatment of breast cancer: The ACRIN 6698 Multicenter Trial.Radiology2018289361862710.1148/radiol.201818027330179110
    [Google Scholar]
  225. ChuW. JinW. LiuD. WangJ. GengC. ChenL. HuangX. Diffusion-weighted imaging in identifying breast cancer pathological response to neoadjuvant chemotherapy: A meta-analysis.Oncotarget2018967088710010.18632/oncotarget.2319529467952
    [Google Scholar]
  226. SantamaríaG. BargallóX. FernándezP.L. FarrúsB. CaparrósX. VelascoM. Neoadjuvant systemic therapy in breast cancer: Association of contrast-enhanced MR imaging findings, diffusion-weighted imaging findings, and tumor subtype with tumor response.Radiology2017283366367210.1148/radiol.201616017627875106
    [Google Scholar]
  227. KimS.Y. ChoN. ShinS.U. LeeH.B. HanW. ParkI.A. KwonB.R. KimS.Y. LeeS.H. ChangJ.M. MoonW.K. Contrast-enhanced MRI after neoadjuvant chemotherapy of breast cancer: Lesion-to-background parenchymal signal enhancement ratio for discriminating pathological complete response from minimal residual tumour.Eur. Radiol.20182872986299510.1007/s00330‑017‑5251‑829380033
    [Google Scholar]
  228. OfriA. MooreK. Occult breast cancer: Where are we at?Breast20205421121510.1016/j.breast.2020.10.01233130487
    [Google Scholar]
  229. HesslerLK Factors influencing management and outcome in patients with occult breast cancer with axillary lymph node involvement: Analysis of the national cancer database.201710.1245/s10434‑017‑5928‑x
    [Google Scholar]
  230. de BresserJ Breast MRI in clinically and mammographically occult breast cancer presenting with an axillary metastasis: A systematic review.201010.1016/j.ejso.2009.09.007
    [Google Scholar]
  231. GalimbertiV. BassaniG. MontiS. SimsekS. VillaG. RenneG. LuiniA. Clinical experience with axillary presentation breast cancer.Breast Cancer Res. Treat.2004881434710.1007/s10549‑004‑9453‑915538044
    [Google Scholar]
  232. Bennani-BaitiB. Bennani-BaitiN. BaltzerP.A. Diagnostic performance of breast magnetic resonance imaging in non-calcified equivocal breast findings: Results from a systematic review and meta-analysis.PLoS One2016118e016034610.1371/journal.pone.016034627482715
    [Google Scholar]
  233. Bennani-BaitiB. BaltzerP.A. MR imaging for diagnosis of malignancy in mammographic microcalcifications: A systematic review and meta-analysis.Radiology2017283369270110.1148/radiol.201616110627788035
    [Google Scholar]
  234. LeungJ.W.T. MR imaging in the evaluation of equivocal clinical and imaging findings of the breast.Magn. Reson. Imaging Clin. N. Am.2010182295308, ix-x10.1016/j.mric.2010.02.01220494313
    [Google Scholar]
  235. NiellB.L. BhattK. DangP. HumphreyK. Utility of Breast MRI for further evaluation of equivocal findings on digital breast tomosynthesis.AJR Am. J. Roentgenol.201821151171117810.2214/AJR.17.1886630207789
    [Google Scholar]
  236. BergerN. LupariaA. Di LeoG. CarbonaroL.A. TrimboliR.M. AmbrogiF. SardanelliF. Diagnostic performance of MRI versus galactography in women with pathologic nipple discharge: A systematic review and meta-analysis.AJR Am. J. Roentgenol.2017209246547110.2214/AJR.16.1668228537847
    [Google Scholar]
  237. DasD.K. Al-AyadhyB. AjrawiM.T.G. ShaheenA.A. SheikhZ.A. MalikM. PathanS.K. EbrahimB. FrancisI.M. SatarS.A. AbdullaM.A. LuthraU.K. JunaidT.A. Cytodiagnosis of nipple discharge: A study of 602 samples from 484 cases.Diagn. Cytopathol.2001251253710.1002/dc.109811466810
    [Google Scholar]
  238. MorroghM. MorrisE.A. LibermanL. BorgenP.I. KingT.A. The predictive value of ductography and magnetic resonance imaging in the management of nipple discharge.Ann. Surg. Oncol.200714123369337710.1245/s10434‑007‑9530‑517896158
    [Google Scholar]
  239. PanzironiG. PediconiF. SardanelliF. Nipple discharge: The state of the art.BJR|Open2019112018001610.1259/bjro.2018001633178912
    [Google Scholar]
  240. MenezesG.L.G. StehouwerB.L. KlompD.W.J. van der VeldenT.A. van den BoschM.A.A.J. KnuttelF.M. BoerV.O. van der KempW.J.M. LuijtenP.R. VeldhuisW.B. Dynamic contrast-enhanced breast MRI at 7T and 3T: An intra-individual comparison study.Springerplus2016511310.1186/s40064‑015‑1654‑726759752
    [Google Scholar]
  241. CheshkovS. DimitrovI. KoningW. 2013https://cds.ismrm.org/protected/ 13MProceedings/files/4407.PDF
  242. van de BankB.L. VoogtI.J. ItaliaanderM. StehouwerB.L. BoerV.O. LuijtenP.R. KlompD.W.J. Ultra high spatial and temporal resolution breast imaging at 7T.NMR Biomed.201326436737510.1002/nbm.286823076877
    [Google Scholar]
  243. ShethK.N. MazurekM.H. YuenM.M. CahnB.A. ShahJ.T. WardA. KimJ.A. GilmoreE.J. FalconeG.J. PetersenN. GobeskeK.T. KaddouhF. HwangD.Y. SchindlerJ. SansingL. MatoukC. RothbergJ. SzeG. SinerJ. RosenM.S. SpudichS. KimberlyW.T. Assessment of Brain Injury Using Portable, Low-Field Magnetic Resonance Imaging at the Bedside of Critically Ill Patients.JAMA Neurol.20217814110.1001/jamaneurol.2020.3263
    [Google Scholar]
  244. MatthewS. Rosen (2022) Low-field MRI for Breast Cancer Screening ClinicalTrials.gov Identifier: NCT054865202022https://clinicaltrials.gov/ct2/show/study/NCT05486520
  245. HulvershornJ. BorthakurA. BloyL. GualtieriE.E. ReddyR. LeighJ.S. ElliottM.A. T 1ρ contrast in functional magnetic resonance imaging.Magn. Reson. Med.20055451155116210.1002/mrm.2069816217783
    [Google Scholar]
  246. PujaraA.C. KimE. AxelrodD. MelsaetherA.N. PET/MRI in Breast Cancer.J. Magn. Reson. Imaging201949232834210.1002/jmri.2629830291656
    [Google Scholar]
  247. MelsaetherA.N. RaadR.A. PujaraA.C. PonzoF.D. PysarenkoK.M. JhaveriK. BabbJ.S. SigmundE.E. KimS.G. MoyL.A. Comparison of whole-body 18F FDG PET/MR imaging and whole-body 18F FDG PET/CT in terms of lesion detection and radiation dose in patients with breast cancer.Radiology2016281119320210.1148/radiol.201615115527023002
    [Google Scholar]
  248. OrlandoA. DimarcoM. CannellaR. BartolottaT.V. Breast dynamic contrast-enhanced-magnetic resonance imaging and radiomics: State of art.Artificial Intelligence in Medical Imaging20201161810.35711/aimi.v1.i1.6
    [Google Scholar]
  249. SatakeH. IshigakiS. ItoR. NaganawaS. Radiomics in breast MRI: Current progress toward clinical application in the era of artificial intelligence.Radiol. Med. (Torino)20221271395610.1007/s11547‑021‑01423‑y34704213
    [Google Scholar]
  250. BickelhauptS. PaechD. KickingerederP. SteudleF. LedererW. DanielH. GötzM. GählertN. TichyD. WiesenfarthM. LaunF.B. Maier-HeinK.H. SchlemmerH.P. BonekampD. Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography.J. Magn. Reson. Imaging201746260461610.1002/jmri.2560628152264
    [Google Scholar]
  251. ZhouJ. ZhangY. ChangK.T. LeeK.E. WangO. LiJ. LinY. PanZ. ChangP. ChowD. WangM. SuM.Y. Diagnosis of benign and malignant breast lesions on DCE-MRI by using radiomics and deep learning with consideration of peritumor tissue.J. Magn. Reson. Imaging202051379880910.1002/jmri.2698131675151
    [Google Scholar]
  252. ChouS.H.S. GombosE.C. ChikarmaneS.A. GiessC.S. JayenderJ. Computer-aided heterogeneity analysis in breast MR imaging assessment of ductal carcinoma in situ: Correlating histologic grade and receptor status.J. Magn. Reson. Imaging20174661748175910.1002/jmri.2571228371110
    [Google Scholar]
  253. LeithnerD. HorvatJ.V. MarinoM.A. Bernard-DavilaB. JochelsonM.S. Ochoa-AlbizteguiR.E. MartinezD.F. MorrisE.A. ThakurS. PinkerK. Radiomic signatures with contrast-enhanced magnetic resonance imaging for the assessment of breast cancer receptor status and molecular subtypes: Initial results.Breast Cancer Res.201921110610.1186/s13058‑019‑1187‑z31514736
    [Google Scholar]
  254. XiongQ. ZhouX. LiuZ. LeiC. YangC. YangM. ZhangL. ZhuT. ZhuangX. LiangC. LiuZ. TianJ. WangK. Multiparametric MRI-based radiomics analysis for prediction of breast cancers insensitive to neoadjuvant chemotherapy.Clin. Transl. Oncol.2020221505910.1007/s12094‑019‑02109‑830977048
    [Google Scholar]
  255. CainE.H. SahaA. HarowiczM.R. MarksJ.R. MarcomP.K. MazurowskiM.A. Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: A study using an independent validation set.Breast Cancer Res. Treat.2019173245546310.1007/s10549‑018‑4990‑930328048
    [Google Scholar]
  256. GranzierR.W.Y. van NijnattenT.J.A. WoodruffH.C. SmidtM.L. LobbesM.B.I. Exploring breast cancer response prediction to neoadjuvant systemic therapy using MRI-based radiomics: A systematic review.Eur. J. Radiol.201912110873610.1016/j.ejrad.2019.10873631734639
    [Google Scholar]
  257. ParkH. LimY. KoE.S. ChoH. LeeJ.E. HanB.K. KoE.Y. ChoiJ.S. ParkK.W. Radiomics Signature on Magnetic Resonance Imaging: Association with Disease-Free Survival in Patients with Invasive Breast Cancer.Clin. Cancer Res.201824194705471410.1158/1078‑0432.CCR‑17‑378329914892
    [Google Scholar]
  258. MilitelloC. RundoL. DimarcoM. OrlandoA. WoitekR. D’AngeloI. RussoG. BartolottaT.V. 3D DCE-MRI Radiomic Analysis for Malignant Lesion Prediction in Breast Cancer Patients.Acad. Radiol.202229683084010.1016/j.acra.2021.08.02434600805
    [Google Scholar]
  259. PrinziF. OrlandoA. GaglioS. MidiriM. VitabileS. ML-Based Radiomics Analysis for Breast Cancer Classification in DCE-MRI.Applied Intelligence and Informatics. AII 2022. Communications in Computer and Information Science. MahmudM. IeracitanoC. KaiserM.S. MammoneN. MorabitoF.C. ChamSpringer2022Vol. 172410.1007/978‑3‑031‑24801‑6_11
    [Google Scholar]
  260. CodariM. SchiaffinoS. SardanelliF. TrimboliR.M. Artificial Intelligence for Breast MRI in 2008–2018: A Systematic Mapping Review.AJR Am. J. Roentgenol.2019212228029210.2214/AJR.18.2038930601029
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056274670240205090722
Loading
/content/journals/cmir/10.2174/0115734056274670240205090722
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): BI-RADS; Breast cancer; Chemotherapy; Diffusion; Magnetic resonance imaging; Screening
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test