Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

Medical imaging mechanization has reformed medical management, empowering doctors to recognize cancer prematurely and promote patient outcomes. Imaging tests are of significant influence in the detection and supervision of cancer patients. Cancer recognition generally necessitates imaging studies that, in most instances, utilize a trivial amount of radiation. Methodologies such as X-rays, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) are predominant in clinical managerial, incorporating remedy and research.

Background

Over recent years, diagnostic imaging has progressed from a state of commencement to an advanced level. Numerous modern imaging procedures have evolved. Although contemporary medical imaging comprises image exhibition together with image refining, computer-aided diagnosis (CAD), image inscribing and conserving, and image transference, the majority of which are embraced in picture documentation and communication processes.

Aim

This review targets to encapsulate toxicology information on skin cancer unpredictability essential to interpretation measures, report important factor that helps in defining skin cancer condition, and possible medical care alternatives or medical attention endorsed referring to diverse aspects involving the size and site of malignancy, the complications, patient’s priority and well being. We concisely review various therapy alternatives, methods of radiation autoimmunity, prime observational study designs of medical and distinct radiation resources and cancer risks, and current analysis methodologies and research precision.

Conclusion

The detail of this paper covers a brief review of research and evolution in medical imaging discipline and mechanism. This review considers the physiology of melanocytes and the pathogenesis of skin cancer using medical imaging. Also, a description of risk factors, prevention methods, screening, various diagnosis methods and different stages of skin cancer, sub-types and different types of treatment methods is provided in this paper for research and development.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056274025231227051446
2024-01-10
2025-06-21
The full text of this item is not currently available.

References

  1. LosquadroW.D. Anatomy of the skin and the pathogenesis of nonmelanoma skin cancer.Facial Plast. Surg. Clin. North Am.201725328328910.1016/j.fsc.2017.03.00128676156
    [Google Scholar]
  2. DhinagarN.J. CelenkM. Analysis of regularity in skin pigmentation and vascularity by an optimized feature space for early cancer classification.2014 7th International Conference on Biomedical Engineering and Informatics14-16 October 2014Dalian, China201410.1109/BMEI.2014.7002865
    [Google Scholar]
  3. McGrathJ.A. UittoJ. Anatomy and Organization of Human Skin.8th edRook’s Textbook Dermatology20101348610.1002/9781444317633.ch3
    [Google Scholar]
  4. SilpaS.R. vC. A review on skin cancer.Int. Res. J. Pharm.201348838810.7897/2230‑8407.04814
    [Google Scholar]
  5. KaushalC. BhatS. KoundalD. SinglaA. Recent trends in computer assisted diagnosis (CAD) system for breast cancer diagnosis using histopathological images.IRBM201940421122710.1016/j.irbm.2019.06.001
    [Google Scholar]
  6. UrbanK. MehrmalS. UppalP. GieseyR.L. DelostG.R. The global burden of skin cancer: A longitudinal analysis from the Global Burden of Disease Study, 1990–2017.JAAD International202129810810.1016/j.jdin.2020.10.01334409358
    [Google Scholar]
  7. BergfeltD.R. Anatomy and physiology of the skin.Equine Breeding Management and Artificial Insemination200911313110.1016/B978‑1‑4160‑5234‑0.00011‑8
    [Google Scholar]
  8. GriffinL.L. AliF.R. LearJ.T. LearJ.T. Non-melanoma skin cancer.Clin. Med.2016161626510.7861/clinmedicine.16‑1‑6226833519
    [Google Scholar]
  9. DasP.K. JadonS. PradhanS. KarD.M. A review article on melanoma.J. Pharm. Sci. Res.201682112117
    [Google Scholar]
  10. DikaE. ScarfìF. FerracinM. BroseghiniE. MarcelliE. BortolaniB. CampioneE. RiefoloM. RicciC. LambertiniM. Basal cell carcinoma: A comprehensive review.Int. J. Mol. Sci.20202115557210.3390/ijms2115557232759706
    [Google Scholar]
  11. ShulstadR.M. ProperS. Squamous cell carcinoma A review of etiology, pathogenesis, treatment, and variants.J. Dermatol. Nurses Assoc.201921015
    [Google Scholar]
  12. WalshN.M. CerroniL. Merkel cell carcinoma: A review.J. Cutan. Pathol.202148341142110.1111/cup.1391033128463
    [Google Scholar]
  13. NaikP.P. DesaiM.B. Basal cell carcinoma: A narrative review on contemporary diagnosis and management.Oncol. Ther.202210231733510.1007/s40487‑022‑00201‑835729457
    [Google Scholar]
  14. KabirS. SchmultsC.D. RuizE.S. A review of cutaneous squamous cell carcinoma epidemiology, diagnosis, and management.Int. J. Cancer Manag.20181111910.5812/ijcm.60846
    [Google Scholar]
  15. AmbwaniR.K.S. MisraA.K. Merkel cells: A collective review of current concepts.Int. J. Appl. Basic Med. Res.201720191119319510.4103/ijabmr.IJABMR
    [Google Scholar]
  16. HarmsP.W. HarmsK.L. MooreP.S. DeCaprioJ.A. NghiemP. WongM.K.K. BrownellI. The biology and treatment of Merkel cell carcinoma: Current understanding and research priorities.Nat. Rev. Clin. Oncol.2018151276377610.1038/s41571‑018‑0103‑230287935
    [Google Scholar]
  17. YamaguchiY. HearingV.J. Melanocytes and their diseases.Cold Spring Harb. Perspect. Med.201445a01704610.1101/cshperspect.a01704624789876
    [Google Scholar]
  18. DidonaD. PaolinoG. BottoniU. CantisaniC. Non melanoma skin cancer pathogenesis overview.Biomedicines201861610.3390/biomedicines601000629301290
    [Google Scholar]
  19. SinghN. KaurP. Comprehensive review of techniques used to detect skin lesion.2017 2nd International Conference for Convergence in Technology (I2CT)07-09 April 2017Mumbai, India201710.1109/I2CT.2017.8226102
    [Google Scholar]
  20. DavidsL.M. KleemB. The menace of melanoma: A photodynamic approach to adjunctive cancer therapy.Melanoma - From Early Detection to TreatmentIntechOpen201310.5772/53676
    [Google Scholar]
  21. NieD. Classification of melanoma and clark nevus skin lesions based on Medical Image Processing Techniques.2011 3rd International Conference on Computer Research and Development11-13 March 2011Shanghai, China2011
    [Google Scholar]
  22. ApallaZ. LallasA. SotiriouE. LazaridouE. IoannidesD. Epidemiological trends in skin cancer.Dermatol. Pract. Concept.2017721610.5826/dpc.0702a0128515985
    [Google Scholar]
  23. GongH.Z. ZhengH.Y. LiJ. Amelanotic melanoma.Melanoma Res.201929322123010.1097/CMR.000000000000057130672881
    [Google Scholar]
  24. McPhersonM. ElwoodM. EnglishD.R. BaadeP.D. YoulP.H. AitkenJ.F. Presentation and detection of invasive melanoma in a high-risk population.J. Am. Acad. Dermatol.200654578379210.1016/j.jaad.2005.08.06516635658
    [Google Scholar]
  25. MaverakisE. CorneliusL. BowenG. PhanT. PatelF. FitzmauriceS. HeY. BurrallB. DuongC. KloxinA. SultaniH. WilkenR. MartinezS. PatelF. Metastatic melanoma - a review of current and future treatment options.Acta Derm. Venereol.201595551652410.2340/00015555‑203525520039
    [Google Scholar]
  26. LangJ. MacKieR.M. Prevalence of exon 15 BRAF mutations in primary melanoma of the superficial spreading, nodular, acral, and lentigo maligna subtypes.J. Invest. Dermatol.2005125357557910.1111/j.0022‑202X.2005.23833.x16117801
    [Google Scholar]
  27. IiiW.P.C. ReedR.J. KrementzE.T. Acral lentiginous melanoma.Arch. Dermatol.2015
    [Google Scholar]
  28. Daniel SuW.P. Malignant melanoma: Basic approach to clinicopathologic correlation.Mayo Clin. Proc.199772326727210.4065/72.3.2679070204
    [Google Scholar]
  29. MarV.J. WongS.Q. LiJ. ScolyerR.A. McLeanC. PapenfussA.T. TothillR.W. KakavandH. MannG.J. ThompsonJ.F. BehrenA. CebonJ.S. WolfeR. KellyJ.W. DobrovicA. McArthurG.A. BRAF/NRAS wild-type melanomas have a high mutation load correlating with histologic and molecular signatures of UV damage.Clin. Cancer Res.201319174589459810.1158/1078‑0432.CCR‑13‑039823833303
    [Google Scholar]
  30. Lugović-MihićL. ĆesićD. VukovićP. Novak BilićG. ŠitumM. ŠpoljarS. Melanoma development: Current knowledge on melanoma pathogenesis.Acta Dermatovenerol. Croat.201927316316831542060
    [Google Scholar]
  31. MichaloglouC. VredeveldL.C.W. SoengasM.S. DenoyelleC. KuilmanT. van der HorstC.M.A.M. MajoorD.M. ShayJ.W. MooiW.J. PeeperD.S. BRAFE600-associated senescence-like cell cycle arrest of human naevi.Nature2005436705172072410.1038/nature0389016079850
    [Google Scholar]
  32. DaviesH. BignellG.R. CoxC. StephensP. EdkinsS. CleggS. TeagueJ. WoffendinH. GarnettM.J. BottomleyW. DavisN. DicksE. EwingR. FloydY. GrayK. HallS. HawesR. HughesJ. KosmidouV. MenziesA. MouldC. ParkerA. StevensC. WattS. HooperS. WilsonR. JayatilakeH. GustersonB.A. CooperC. ShipleyJ. HargraveD. Pritchard-JonesK. MaitlandN. Chenevix-TrenchG. RigginsG.J. BignerD.D. PalmieriG. CossuA. FlanaganA. NicholsonA. HoJ.W.C. LeungS.Y. YuenS.T. WeberB.L. SeiglerH.F. DarrowT.L. PatersonH. MaraisR. MarshallC.J. WoosterR. StrattonM.R. FutrealP.A. Mutations of the BRAF gene in human cancer.Nature2002417689294995410.1038/nature0076612068308
    [Google Scholar]
  33. Martins da SilvaV. Martinez-BarriosE. Tell-MartíG. DabadM. CarreraC. AguileraP. BruallaD. Esteve-CodinaA. VicenteA. PuigS. Puig-ButilléJ.A. MalvehyJ. Genetic abnormalities in large to giant congenital nevi: Beyond nras mutations.J. Invest. Dermatol.2019139490090810.1016/j.jid.2018.07.04530359577
    [Google Scholar]
  34. CoricovacD. DeheleanC. MoacaE.A. PinzaruI. BratuT. NavolanD. BorugaO. Cutaneous melanoma—a long road from experimental models to clinical outcome: A review.Int. J. Mol. Sci.2018196156610.3390/ijms1906156629795011
    [Google Scholar]
  35. DelyonJ. LebbeC. DumazN. Targeted therapies in melanoma beyond BRAF: Targeting NRAS-mutated and KIT-mutated melanoma.Curr. Opin. Oncol.2020322798410.1097/CCO.000000000000060631833955
    [Google Scholar]
  36. TollesonW.H. Human melanocyte biology, toxicology, and pathology.J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev.200523210516110.1080/1059050050023497016291526
    [Google Scholar]
  37. MarghoobA.A. KoenigK. BittencourtF.V. KopfA.W. BartR.S. Breslow thickness and Clark level in melanoma.Cancer200088358959510.1002/(SICI)1097‑0142(20000201)88:3<589::AID‑CNCR15>3.0.CO;2‑I10649252
    [Google Scholar]
  38. PetroA. SchwartzJ. JohnsonT. Current melanoma staging.Clin. Dermatol.200422322322710.1016/j.clindermatol.2003.12.01015262308
    [Google Scholar]
  39. LeM.N. LeeE. SinghB. The evolution of staging of cutaneous squamous cell carcinomas: A structured review.Int. J. Head Neck Surg.201782576310.5005/jp‑journals‑10001‑1307
    [Google Scholar]
  40. WuS. ChoE. LiW.Q. WeinstockM.A. HanJ. QureshiA.A. History of severe sunburn and risk of skin cancer among women and men in 2 prospective cohort studies.Am. J. Epidemiol.2016183982483310.1093/aje/kwv28227045074
    [Google Scholar]
  41. DownsN.J. AxelsenT. SchoutenP. IgoeD.P. ParisiA.V. VanosJ. Biologically effective solar ultraviolet exposures and the potential skin cancer risk for individual gold medalists of the 2020 Tokyo Summer Olympic Games.Temperature2020718910810.1080/23328940.2019.158142732166106
    [Google Scholar]
  42. OuhtitA. Konrad MullerH. GornyA. AnanthaswamyH.N. UVB-induced experimental carcinogenesis: Dysregulation of apoptosis and p53 signalling pathway.Redox Rep.200052-312812910.1179/13510000010153544710939292
    [Google Scholar]
  43. MoanJ. GrigalaviciusM. BaturaiteZ. DahlbackA. JuzenieneA. The relationship between UV exposure and incidence of skin cancer.Photodermatol. Photoimmunol. Photomed.2015311263510.1111/phpp.1213925213656
    [Google Scholar]
  44. ParradoC. Mercado-SaenzS. Perez-DavoA. GilaberteY. GonzalezS. JuarranzA. Environmental stressors on skin aging. Mechanistic insights.Front. Pharmacol.201910July75910.3389/fphar.2019.0075931354480
    [Google Scholar]
  45. HartP.H. NorvalM. Ultraviolet radiation-induced immunosuppression and its relevance for skin carcinogenesis.Photochem. Photobiol. Sci.201817121872188410.1039/c7pp00312a29136080
    [Google Scholar]
  46. MitraD. LuoX. MorganA. WangJ. HoangM.P. LoJ. GuerreroC.R. LennerzJ.K. MihmM.C. WargoJ.A. RobinsonK.C. DeviS.P. VanoverJ.C. D’OrazioJ.A. McMahonM. BosenbergM.W. HaigisK.M. HaberD.A. WangY. FisherD.E. An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background.Nature2012491742444945310.1038/nature1162423123854
    [Google Scholar]
  47. LeachmanS.A. LuceroO.M. SampsonJ.E. CassidyP. BrunoW. QueiroloP. GhiorzoP. Identification, genetic testing, and management of hereditary melanoma.Cancer Metastasis Rev.2017361779010.1007/s10555‑017‑9661‑528283772
    [Google Scholar]
  48. PópuloH. SoaresP. LopesJ.M. Insights into melanoma: Targeting the mTOR pathway for therapeutics.Expert Opin. Ther. Targets201216768970510.1517/14728222.2012.69147222620498
    [Google Scholar]
  49. FusaroR.M. LynchH.T. KimberlingW.J. Familial atypical multiple mole melanoma syndrome (FAMMM).Arch. Dermatol.198311912310.1001/archderm.1983.016502500060026849558
    [Google Scholar]
  50. SmalleyK.S.M. ContractorR. NguyenT.K. XiaoM. EdwardsR. MuthusamyV. KingA.J. FlahertyK.T. BosenbergM. HerlynM. NathansonK.L. Identification of a novel subgroup of melanomas with KIT/cyclin-dependent kinase-4 overexpression.Cancer Res.200868145743575210.1158/0008‑5472.CAN‑08‑023518632627
    [Google Scholar]
  51. BrashD.E. RudolphJ.A. SimonJ.A. LinA. McKennaG.J. BadenH.P. HalperinA.J. PonténJ. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma.Proc. Natl. Acad. Sci.19918822101241012810.1073/pnas.88.22.101241946433
    [Google Scholar]
  52. NelsonM.A. EinspahrJ.G. AlbertsD.S. BalfourC.A. WymerJ.A. WelchK.L. SalascheS.J. BangertJ.L. GroganT.M. BozzoP.O. Analysis of the p53 gene in human precancerous actinic keratosis lesions and squamous cell cancers.Cancer Lett.1994851232910.1016/0304‑3835(94)90234‑87923098
    [Google Scholar]
  53. ZieglerA. JonasonA.S. LeffelltD.J. SimonJ.A. SharmaH.W. KimmelmanJ. RemingtonL. JacksT. BrashD.E. Sunburn and p53 in the onset of skin cancer.Nature1994372650877377610.1038/372773a07997263
    [Google Scholar]
  54. CuiR. WidlundH.R. FeigeE. LinJ.Y. WilenskyD.L. IgrasV.E. D’OrazioJ. FungC.Y. SchanbacherC.F. GranterS.R. FisherD.E. Central role of p53 in the suntan response and pathologic hyperpigmentation.Cell2007128585386410.1016/j.cell.2006.12.04517350573
    [Google Scholar]
  55. Gray-SchopferV. WellbrockC. MaraisR. Melanoma biology and new targeted therapy.Nature2007445713085185710.1038/nature0566117314971
    [Google Scholar]
  56. MasonT.J. RieraE. VercetA. Lopez-BuesaP. Application of ultrasound.Emerging Technologies for Food ProcessingAcademic Press200532335110.1016/B978‑012676757‑5/50015‑3
    [Google Scholar]
  57. KoundalD. GuptaS. SinghS. Computer aided thyroid nodule detection system using medical ultrasound images.Biomed. Signal Process. Control20184011713010.1016/j.bspc.2017.08.025
    [Google Scholar]
  58. Dill-MüllerD. MaschkeJ. Ultraschalldiagnostik in der dermatologie.JDDG - J Ger. Soc. Dermatology20075868970710.1111/j.1610‑0387.2007.06453.x17659044
    [Google Scholar]
  59. MohrP. EggermontA.M.M. HauschildA. BuzaidA. Staging of cutaneous melanoma.Ann. Oncol.200920S4vi14vi2110.1093/annonc/mdp256
    [Google Scholar]
  60. DinnesJ. Ferrante di RuffanoL. TakwoingiY. CheungS.T. NathanP. MatinR.N. ChuchuN. ChanS.A. DurackA. BaylissS.E. GulatiA. PatelL. DavenportC. GodfreyK. SubesingheM. TraillZ. DeeksJ.J. WilliamsH.C. Ultrasound, CT, MRI, or PET-CT for staging and re-staging of adults with cutaneous melanoma.Cochrane Libr.201920197CD01280610.1002/14651858.CD012806.pub231260100
    [Google Scholar]
  61. BuchbenderC. HeusnerT.A. LauensteinT.C. BockischA. AntochG. Oncologic PET/MRI, part 2: Bone tumors, soft-tissue tumors, melanoma, and lymphoma.J. Nucl. Med.20125381244125210.2967/jnumed.112.10930622782313
    [Google Scholar]
  62. LeongS.P.L. MihmM.C.Jr MurphyG.F. HoonD.S.B. Kashani-SabetM. AgarwalaS.S. ZagerJ.S. HauschildA. SondakV.K. GuildV. KirkwoodJ.M. Progression of cutaneous melanoma: Implications for treatment.Clin. Exp. Metastasis201229777579610.1007/s10585‑012‑9521‑122892755
    [Google Scholar]
  63. BrănişteanuD.E. CozminM. Porumb-AndreseE. BrănişteanuD. ToaderM.P. IosepD. SinigurD. BrănişteanuC.I. BrănişteanuG. PorumbV. PînzariuA.C. BăilăS.L. NicolescuA.C. Sentinel lymph node biopsy in cutaneous melanoma, a clinical point of view.Medicina20225811158910.3390/medicina5811158936363546
    [Google Scholar]
  64. MillerJ.R.III LoS.N. NosratiM. StretchJ.R. SpillaneA.J. SawR.P.M. ShannonK.F. NiewegO.E. Ch’ngS. KimK.B. LeongS.P. ThompsonJ.F. ScolyerR.A. Kashani-SabetM. Improving selection for sentinel lymph node biopsy among patients with melanoma.JAMA Netw. Open202364e23635610.1001/jamanetworkopen.2023.635637074717
    [Google Scholar]
  65. Salguero-FernándezI. Rios-BucetaL. Jaén-OlasoloP. [Sentinel lymph node in nonmelanoma skin cancer].Actas Dermo-Sifiliográficas2011102858959810.1016/j.adengl.2011.05.00121907945
    [Google Scholar]
  66. OlszanskiA.J. Current and future roles of targeted therapy and immunotherapy in advanced melanoma.J. Manag. Care Pharm.201420434635610.18553/jmcp.2014.20.4.34624684639
    [Google Scholar]
  67. JunttilaM.R. de SauvageF.J. Influence of tumour micro-environment heterogeneity on therapeutic response.Nature2013501746734635410.1038/nature1262624048067
    [Google Scholar]
  68. KeldermanS. HeemskerkB. FanchiL. PhilipsD. ToebesM. KvistborgP. van BuurenM.M. van RooijN. MichelsS. GermerothL. HaanenJ.B.A.G. SchumacherN.M. Antigen‐specific TIL therapy for melanoma: A flexible platform for personalized cancer immunotherapy.Eur. J. Immunol.20164661351136010.1002/eji.20154584927005018
    [Google Scholar]
  69. SimonB. UsluU. CAR ‐T cell therapy in melanoma: A future success story?Exp. Dermatol.201827121315132110.1111/exd.1379230288790
    [Google Scholar]
  70. FeldmanL. BrownC. BadieB. Chimeric antigen receptor (CAR) T cell therapy for glioblastoma.Neuromolecular Med.2022241354010.1007/s12017‑021‑08689‑534665390
    [Google Scholar]
  71. CoccorisM. StraetemansT. GoversC. LamersC. SleijferS. DebetsR. T cell receptor (TCR) gene therapy to treat melanoma: Lessons from clinical and preclinical studies.Expert Opin. Biol. Ther.201010454756210.1517/1471259100361475620146634
    [Google Scholar]
  72. SchmittJ. HaufeE. TrautmannF. SchulzeH.J. ElsnerP. DrexlerH. BauerA. LetzelS. JohnS.M. FartaschM. BrüningT. SeidlerA. Dugas-BreitS. GinaM. WeistenhöferW. BachmannK. BruhnI. LangB.M. BonnessS. AllamJ.P. GrobeW. StangeT. WesterhausenS. KnuschkeP. WittlichM. DiepgenT.L. Is ultraviolet exposure acquired at work the most important risk factor for cutaneous squamous cell carcinoma? Results of the population-based case-control study FB-181.Br. J. Dermatol.2018178246247210.1111/bjd.1590628845516
    [Google Scholar]
  73. CollinsL. QuinnA. StaskoT. Skin cancer and immunosuppression.Dermatol. Clin.2019371839410.1016/j.det.2018.07.00930466691
    [Google Scholar]
  74. YeungH. BalakrishnanV. LukK.M.H. ChenS.C. Risk of skin cancers in older persons living with HIV.J. Assoc. Nurses AIDS Care2019301808610.1097/JNC.000000000000000130586085
    [Google Scholar]
  75. ChangA.Y. DoironP. MaurerT. Cutaneous malignancies in HIV.Curr. Opin. HIV AIDS2017121576210.1097/COH.000000000000033827875372
    [Google Scholar]
  76. SinclairR. BakerC. SpelmanL. SupranowiczM. MacMahonB. A review of actinic keratosis, skin field cancerisation and the efficacy of topical therapies.Australas. J. Dermatol.202162211912310.1111/ajd.1344732840870
    [Google Scholar]
  77. BonillaX. ParmentierL. KingB. BezrukovF. KayaG. ZoeteV. SeplyarskiyV.B. SharpeH.J. McKeeT. LetourneauA. RibauxP.G. PopadinK. Basset-SeguinN. ChaabeneR.B. SantoniF.A. AndrianovaM.A. GuipponiM. GarieriM. VerdanC. GrosdemangeK. SumaraO. EilersM. AifantisI. MichielinO. de SauvageF.J. AntonarakisS.E. NikolaevS.I. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma.Nat. Genet.201648439840610.1038/ng.352526950094
    [Google Scholar]
  78. NicholsA.J. GonzalezA. ClarkE.S. KhanW.N. RosenA.C. GuzmanW. RabinovitzH. BadiavasE.V. KirsnerR.S. IoannidesT. Combined systemic and intratumoral administration of human papillomavirus vaccine to treat multiple cutaneous basaloid squamous cell carcinomas.JAMA Dermatol.2018154892793010.1001/jamadermatol.2018.174829971321
    [Google Scholar]
  79. IshidaY. OtsukaA. KabashimaK. Cutaneous angiosarcoma: Update on biology and latest treatment.Curr. Opin. Oncol.201830210711210.1097/CCO.000000000000042729194075
    [Google Scholar]
  80. GoerdtL.V. SchneiderS.W. BookenN. Cutaneous angiosarcomas: Molecular pathogenesis guides novel therapeutic approaches.J. Dtsch. Dermatol. Ges.202220442944310.1111/ddg.1469435218306
    [Google Scholar]
  81. CaoJ. WangJ. HeC. FangM. Angiosarcoma: A review of diagnosis and current treatment.Am. J. Cancer Res.201991123032313
    [Google Scholar]
  82. DubaiP. BhattS. JoglekarC. PatiiS. Skin cancer detection and classification2017 6th International Conference on Electrical Engineering and Informatics (ICEEI)25-27 November 2017Langkawi, Malaysia20171610.1109/ICEEI.2017.8312419
    [Google Scholar]
  83. JanjuaO.S. QureshiS.M. Basal cell carcinoma of the head and neck region: an analysis of 171 cases.J. Skin Cancer201220121410.1155/2012/94347223316370
    [Google Scholar]
  84. VitielloP. SicaA. RonchiA. CaccavaleS. FrancoR. ArgenzianoG. Primary cutaneous b-cell lymphomas: An update.Front. Oncol.202010May65110.3389/fonc.2020.0065132528871
    [Google Scholar]
  85. LucioniM. FraticelliS. NeriG. FeltriM. FerrarioG. RiboniR. PaulliM. Primary cutaneous b-cell lymphoma: An update on pathologic and molecular features.Hemato20223231834010.3390/hemato3020023
    [Google Scholar]
  86. MalpicaL. Paving the path to better understanding T-cell lymphomas: The importance of lymphoma registries.Lancet Reg. Health West. Pac20211010013410.1016/j.lanwpc.2021.10013434327347
    [Google Scholar]
  87. BagheraniN. SmollerB.R. An overview of cutaneous T cell lymphomas.F1000 Res.201650188210.12688/f1000research.8829.127540476
    [Google Scholar]
  88. OsimeC. IrowaO. ObasekiD. OsaigbovoE. Dermatofibrosarcoma protuberans of the breast in a male: A case report and review of the literature.AJMHS201413211910.4103/2384‑5589.144583
    [Google Scholar]
  89. SheidaeiS. SalehiM. Abedian kenariF. JafariH.R. Dermatofibrosarcoma protuberans challenges: A case series and review of the literature.J. Med. Case Reports20231711810.1186/s13256‑022‑03728‑636653860
    [Google Scholar]
  90. HaoX. BillingsS.D. WuF. StultzT.W. ProcopG.W. MirkinG. VidimosA.T. Dermatofibrosarcoma protuberans: Update on the diagnosis and treatment.J. Clin. Med.202096175210.3390/jcm906175232516921
    [Google Scholar]
  91. SchmerlingR.A. CasasJ.G. CinatG. OspinaF.E.G. KassugaL.E.B.P. TlahuelJ.L.M. MazzuoccoloL.D. Burden of disease, early diagnosis, and treatment of Merkel cell carcinoma in Latin America.J. Glob. Oncol.20184411110.1200/JGO.18.0004130085832
    [Google Scholar]
  92. MichaelR.S. GabrielJ.S. EricA.E. ElizabethK.C. AlisaM.G. Sebaceous carcinoma epidemiology and genetics: Emerging concepts and clinical implications for screening, prevention, and treatment.Clin Cancer Res2021272389393
    [Google Scholar]
  93. GreenA.C. OlsenC.M. Cutaneous squamous cell carcinoma: An epidemiological review.Br. J. Dermatol.2017177237338110.1111/bjd.1532428211039
    [Google Scholar]
  94. KangS.Y. TolandA.E. High risk cutaneous squamous cell carcinoma of the head and neck.World J. Otorhinolaryngol. Head Neck Surg.20162213614010.1016/j.wjorl.2016.05.00429204558
    [Google Scholar]
  95. LubovJ. LabbéM. SioufiK. MorandG.B. HierM.P. KhannaM. SultanemK. MlynarekA.M. Prognostic factors of head and neck cutaneous squamous cell carcinoma: A systematic review.J. Otolaryngol. Head Neck Surg.20215015410.1186/s40463‑021‑00529‑734493343
    [Google Scholar]
  96. JohnsonD.E. BurtnessB. LeemansC.R. LuiV.W.Y. BaumanJ.E. GrandisJ.R. Head and neck squamous cell carcinoma.Nat. Rev. Dis. Primers2020619210.1038/s41572‑020‑00224‑333243986
    [Google Scholar]
  97. ShimizuI. CruzA. ChangK.H. DufresneR.G. Treatment of squamous cell carcinoma in situ: A review.Dermatol. Surg.201137101394141110.1111/j.1524‑4725.2011.02088.x21767324
    [Google Scholar]
  98. ShendeP. VaidyaJ. GaudR.S. Pharmacotherapeutic approaches for transportation of anticancer agents via skin.Artif Cells Nanomed Biotechnol.201846S3S423S43310.1080/21691401.2018.1498349
    [Google Scholar]
  99. PotenzaC. BernardiniN. BalduzziV. LoscoL. MambrinA. MarchesielloA. TolinoE. ZuberS. SkrozaN. ProiettiI. A review of the literature of surgical and nonsurgical treatments of invasive squamous cells carcinoma.BioMed Res. Int.201820181910.1155/2018/948916329808169
    [Google Scholar]
  100. StanganelliI. SpagnoloF. ArgenzianoG. AsciertoP.A. BassettoF. BossiP. DonatoV. MassiD. MassoneC. PatuzzoR. PellacaniG. QuaglinoP. QueiroloP. ZalaudekI. PalmieriG. The multidisciplinary management of cutaneous squamous cell carcinoma: A comprehensive review and clinical recommendations by a panel of experts.Cancers202214237710.3390/cancers1402037735053539
    [Google Scholar]
  101. GoldmanG. The current status of curettage and electrodesiccation.Dermatol. Clin.2002203569578, ix10.1016/S0733‑8635(02)00022‑012170889
    [Google Scholar]
  102. BittnerG.C. CerciF.B. KuboE.M. TolkachjovS.N. Mohs micrographic surgery: A review of indications, technique, outcomes, and considerations.An. Bras. Dermatol.202196326327710.1016/j.abd.2020.10.00433849752
    [Google Scholar]
  103. ChanprapaphK. VachiramonV. RattanakaemakornP. Epidermal growth factor receptor inhibitors: A review of cutaneous adverse events and management.Dermatol. Res. Pract.201420141810.1155/2014/73424924723942
    [Google Scholar]
  104. GambiniD. PassoniE. NazzaroG. BeltraminiG. TomaselloG. GhidiniM. KuhnE. GarroneO. Basal cell carcinoma and hedgehog pathway inhibitors: Focus on immune response.Front. Med.20229June89306310.3389/fmed.2022.89306335775005
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056274025231227051446
Loading
/content/journals/cmir/10.2174/0115734056274025231227051446
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test